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Abstract 
The existence of a basis in free abelian groups could not be separated from the concept of linear 

independence. In vector spaces, linear independence has several implications that play an important role 

in various basis discussions. The discussion regarding the free abelian groups focuses more on its basis 

and implications. In this article, to get deeper implications regarding the basis of free abelian groups, 

namely the implications of their linear independence first, such as if a subset X of F is linearly 

independent then every element of the subgroup generated by X can be written uniquely as a linear 

combination of some elements of X, and other implications. The methodology used in this article is 

literature study and focus group discussion to obtain information from algebra experts. The result of the 

research are there is an implication of linear independence in free abelian groups that applies as well as 

linear independence in vector space, but there are also certain implications that cannot be applied to free 

abelian groups. This will be interesting as further research regarding the properties of the basis in free 

abelian groups. 
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1.       Introduction 

Real vector space is a concept in a branch of mathematics called linear algebra. Vector can 

be added to each other and multiplied by a scalar. As in Lax (2017), real vector space is an abelian 

group for addition operation and for scalar satisfy some conditions. Let V is a set of objects with 

two operations, let's call them addition and multiplication by scalars (real numbers). Scalar 

multiplication: for every scalar s and vector a ∈V is defined multiplication sa. Vector addition: for 

every vector a, b∈ V is defined a + b addition. So that, ∀a, b, c ∈ V and scalars s, t, and 1. 

For all elements of a, b ∈ V then a + b ∈ V, the addition operation results in an element 

also in V. For any elements a, b, c ∈ V, addition operation is associative, meaning (a+b) + c = a + 

(b+c). There exist identity element e ∈ V such that for any element a, e + a =a + e = a. Every 

element a∈ V has inverse element -a ∈ V then a + (-a) = -a + a = e. The addition operation is 

commutative, meaning for all a, b ∈ V then a + b = b + a. For any scalars s, t∈ R and if elements 

a, b ∈ V, the operation satisfies the following properties: sa∈ V, s (ta) = (st) a, (s+t)a =sa + ta, 

s(a+b) =sa + sb, and 1a = a.  

In other hand, as in Aliabadi (2022), abelian group for integer scalar satisfies same 

conditions as on real vector spaces. A commutative group, also called an abelian group, fulfils the 

following conditions 4 group requirements and the commutative property. 
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As in Dummit (2020), for all elements of a,b∈G then a + b ∈ G, the addition operation 

results in an element also in G. For any elements a, b, c ∈ G, addition operation is associative, 

meaning (a+b) + c = a + (b+c). There exist identity element e ∈ G such that for any element a, e + 

a = a + e = a. Every element a ∈ G has inverse element -a ∈ G then a + (-a) = -a + a = e. The 

addition operation is commutative, meaning for all a, b ∈ G then a + b = b + a. For any scalars s, t 

∈ Z and if elements a, b ∈ G, the operation satisfies the following properties: sa ∈ G, s(ta) = (st)a, 

(s+t)a = sa + ta, s(a+b) = sa + sb, and 1a = a.  

Commutative groups are like vector spaces but are not vector spaces. Although 

commutative groups and vector spaces have similarities, they are distinct mathematical structures 

with unique properties. Both involve a set of elements, and one or more operations defined on 

those elements. However, the specific operations and their properties set them apart. 

In the discussion of vector spaces, there is a very important concept, namely the basis. 

Through basis, many things in the discussion of vector spaces can be found more easily, such as 

building all vectors in the vector space, getting a linear transformation representation matrix etc.  

 As in Axler (2015), in real vector space, there is subset that can be a basis, it is subset 

which can generate all vectors and subset which all the elements are linearly independent. As well 

as in the vector spaces, abelian group has basis too but not all abelian group has a basis. There is 

an abelian group which has a basis called free abelian group. 

Table 1. Basis in Real Vector Space and Abelian Group  

Real Vector Space Free Abelian Group 

The linear independence of a basis of a vector 

space has the following implications: 

1) 𝑋 is linearly independent if and only if every 

vector in 𝑉 can be uniquely expressed in the 

form 𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛 

2) If 𝑉 has dimension 𝑛, then every linearly 

independent subset of 𝑉 consisting of 𝑛 

elements forms a basis.  

3) If 𝑉 is a vector space, then every linearly 

independent subset of 𝑉 can be extended to 

form a basis.  

4) If 𝑉 is a vector space, then every subset that 

spans 𝑉 contains a basis of 𝑉." 

It will be checked whether the basis 

independence has criteria similar to the 

basis in vector space 

 

2.       Research Method 

This research uses a type of literature study research (literature review) with the selected 

review model is a narrative review. The study conducted in the narrative review model is to 
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compare data from several international journals that have been analysed and summarised based 

on the author's experience, existing theories and models.  

The research method used is a qualitative research method with data sources used in the 

form of data obtained from several international journals, articles and previous studies that have 

been analysed by the author related to the problems to be studied in this study.  

To obtain information that is not specified in the literature study related to the implications 

of linear independence on free abelian groups, focus group discussion (FGD) activities are carried 

out with mathematics experts in FGD I and FGD II. 

Figure 1. Steps of The Research 

 

Figure 2. Road Map of The Implementation of The Focus Group Discussion

 

Before we discuss about results and discussions, here are some definitions and theorems 

that will be used. 

When discussing groups, we often use multiplication as the main notation. In this article, 

since we are discussing about abelian groups, each structure will be adjusted using the addition 

operation. For example, operation ab is replaced by a+b, invers a^(-1) is replaced by -a, identity e 

is replaced by 0, the n-th power a^n is replaced by na, and so on. 

Theorem 2.1 

For any abelian group 𝐺 

a) (𝑚 +  𝑛)𝑎 = 𝑚𝑎 + 𝑛𝑎, for every 𝑎 ∈  𝐺; 𝑚, 𝑛 ∈ ℤ 

b) 𝑚(𝑎 + 𝑏) = 𝑚𝑎 + 𝑚𝑏, for every 𝑎, 𝑏 ∈  𝐺; 𝑚 ∈ ℤ. 

Theorem 2.1 confirmed the properties of any abelian group that similar with the properties 

of real vector spaces about scalar multiplications. 

 

Literature 
Study

Analysis FGD I Analysis FGD II Analysis
Research 

Result
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Theorem 2.2 

The subgroup ⟨X⟩ of an abelian group G consists of all elements with the form 

                                          𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛,  

for k_i ∈ Z and x_1, x_2, …, x_n are distinct elements of X. The form k_1 x_1 + k_2 x_2 + … + 

k_n x_n is called linear combination. In particular, the cylic group ⟨x⟩ is consists of all elements 

with the form nx for n ∈ Z. 

Note that from Theorem 2.2, we have the definition of linear combination as exactly as in 

real vector space. 

Definition 2.3 

A subset X of an abelian group G is said to be linearly independent if  

                                      𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛 = 0 

always implies 𝑘𝑖 = 0 ∈ ℤ for all 𝑖, and 𝑥1, 𝑥2, …, 𝑥𝑛 are distinct elements of 𝑋. 

Same as linear combination, from Definition 2.3, we have the definition of linearly 

independent as exactly as in real vector space. 

Definition 2.4 

A subset X of an abelian group G is said to be a basis if X is generating G and linearly independent. 

Finally, from the Definition 2.4, the definition of basis as in real vector space has the similar 

condition to the definition of a basis for a free abelian group. 

Definition 2.5 

An abelian group 𝐺 is called free abelian group if 𝐺 has a basis. 

 

From the definition, as mentioned above in Introduction, not every abelian group has a 

basis. So from Definition 2.4, we use free abelian group as the main topic so that we can compare 

their properties with real vector spaces. 

Example 2.6 

An abelian group ℤ is free abelian group with basis 𝑋 = {1}. 

Note that 𝑛. 1 = 0 always implies 𝑛 = 0, so 𝑋 is linearly independent. Let 𝑧 be any element of ℤ. 

Note that 𝑧 = 𝑧. 1 ∈ ⟨1⟩, then 𝑋 generates ℤ. This is proving that 𝑋 is basis of ℤ. 

Example 2.7 

A group of modulo 𝑛 ≠ 0, ℤ𝑛 is not free abelian group. 

Let 𝑥 be any element of ℤ𝑛 and 𝑘𝑥 = 0 ∈ ℤ𝑛. Note that for 𝑘 = 𝑛 ≠ 0, 𝑘𝑥 = 𝑛𝑥 = 0. Then there 

is no element of ℤ𝑛 that linearly independent. This is proving that ℤ𝑛 has no basis which means 

ℤ𝑛 is not free abelian group. 
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Example 2.8 

A group of direct sum ℤ ⊕ ℤ is free abelian group with basis 𝑋 = {(1,0), (0,1)}. 

Note that 𝑘(1,0) + 𝑙(0,1) = (0,0) always implies 𝑘 = 𝑙 = 0, so 𝑋 is linearly independent. Let 

(𝑎, 𝑏) be any element of ℤ ⊕ ℤ. Note that (𝑎, 𝑏) = 𝑎(1,0) + 𝑏(0,1) ∈ ⟨𝑋⟩, then 𝑋 generates ℤ ⊕ 

ℤ. This is proving that 𝑋 is basis of ℤ ⊕ ℤ. 

3. Results and Discussions 

 

Based on the results of literature studies and discussions with algebra experts, the linear 

independence of the basis of a free abelian group does not have the same implications as the linear 

independence of real vector spaces. In this section, we explain each implication mentioned in the 

Introduction. The following theorem is the only implication of each implication that is satisfied.d. 

Theorem 3.1 

Any subset 𝑋 of a free abelian group 𝐺 is linearly independent if and only if every nonzero element 

of the subgroup ⟨𝑋⟩ can be uniquely expressed in the form 𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛, for 𝑘𝑖 ∈ ℤ 

and 𝑥1, 𝑥2, …, 𝑥𝑛 are distinct elements of 𝑋. 

Proof: 

Let 𝑋 be any subset of a free abelian group 𝐺 and linearly independent. 

Let 𝑢 ∈ ⟨𝑋⟩ arbitrary, then 𝑢 = 𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛, for  𝑘𝑖 ∈ ℤ and 𝑥1, 𝑥2, …, 𝑥𝑛 are 

distinct elements of 𝑋. 

Let 𝑢 = 𝑙1𝑥1 + 𝑙2𝑥2 + … + 𝑙𝑚𝑥𝑚 be another form of 𝑢. Without loss of generality, then 

𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛 =  𝑙1𝑥1 + 𝑙2𝑥2 + … + 𝑙𝑚𝑥𝑚 + 0𝑥𝑚+1 + … + 0𝑥𝑛 

(𝑘1 − 𝑙1)𝑥1 + (𝑘2 − 𝑙2)𝑥2 + … + (𝑘𝑚 − 𝑙𝑚)𝑥𝑚 + 𝑘𝑚+1𝑥𝑚+1 + … + 𝑘𝑛𝑥𝑛 = 0𝐺 . 

Since 𝑋 is linearly independent, then for 𝑖 = 1,…, 𝑚, 𝑘𝑖 − 𝑙𝑖 = 0, and  

for 𝑖 = 𝑚 + 1, …, 𝑛, 𝑘𝑖 = 0. 

So, 𝑘𝑖 = 𝑙𝑖, proving that the expression is unique. 

Conversely, let every nonzero element of the subgroup ⟨𝑋⟩ can be uniquely expressed in the 

form 𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛, for 𝑘𝑖 ∈ ℤ and 𝑥1, 𝑥2, …, 𝑥𝑛 are distinct elements of 𝑋. 

Let 𝑘1𝑥1 + 𝑘2𝑥2 + … + 𝑘𝑛𝑥𝑛 = 0𝐺. 

Since 0𝐺  = 0𝑥1 + 0𝑥2 + … + 0𝑥𝑛, then 𝑘𝑖 = 0, proving that 𝑋 is linearly independent. 
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First Failed Implication 

Some other implications mentioned in the introduction unfortunately cannot be satisfied 

by the linear independence of the basis of free abelian group. The first implication that fails is that 

“if G is a free abelian group of rank n, then every linearly independent subset of n elements of G 

is a basis”. For example, consider the following free abelian additive group Z of rank 1.  

Consider 𝑋 = {2} ⊂ ℤ. Note that 𝑛. 2 = 0 if and only if 𝑛 = 0, which means that 𝑋 is linearly 

independent. However, 𝑋 is not a basis of ℤ since ∃3 ∈ ℤ, but 3 = 𝑛. 2 has no integer solutions, or 

in other words 3 ≠ 𝑛. 2 for every 𝑛 ∈ ℤ.  

Second Failed Implication 

A further implication that is not satisfied is that “if 𝐺 is a free abelian group, then every 

linearly independent subset of 𝐺 can be extended into a basis of 𝐺”. For example, consider the 

following free abel group ℤ ⊕ ℤ. Consider the subset {(2,0)} of ℤ ⊕ ℤ. 

Note that 𝑛. (2,0) = (0,0)  ⇔  (2𝑛, 0) = (0,0)  ⇔   𝑛 = 0, which means {(2,0)} is linearly 

independent. 

Since rank of ℤ ⊕ ℤ is 2, suppose that the subset {(2,0)} can be extended to {(2,0), (𝑎, 𝑏)} as a 

basis of ℤ ⊕ ℤ. Then for every (𝑥, 𝑦) ∈ ℤ ⊕ ℤ can be written as a linear combination  

(𝑥, 𝑦) = 𝑘1(2,0) + 𝑘2(𝑎, 𝑏) 

with 𝑘1 and 𝑘2 be integers. 

If we dissect the linear combination then 𝑥 = 2𝑘1 + 𝑎𝑘2 and 𝑦 = 𝑏𝑘2, which produce 𝑘2 = 𝑦/𝑏 

and 𝑘1 = (𝑥 −
𝑎𝑦

𝑏
)/2.  

Since 𝑦 is arbitrary and 𝑘2 ∈ ℤ, then it must be 𝑏 = 1. Consequently, 𝑘1 = (𝑥 − 𝑎𝑦)/2. 

This requires that either 𝑥 and 𝑎𝑦 are both even or 𝑥 and 𝑎𝑦 are both odd. However, since 𝑥 and 

𝑦 are arbitrary, they can be both even, both odd, or any other condition. 

Consider the case when 𝑥 is odd and 𝑦 is even, then the condition 𝑥 is odd and 𝑎𝑦 is even 

is created, in other words, 𝑥 − 𝑎𝑦 = (2𝑝 + 1) − 𝑎(2𝑞) =  2(𝑝 − 𝑎𝑞) + 1 which is an odd number, 

as a result 𝑘1 is not an integer, a contradiction. 

Thus, {(2,0)} cannot be extended into a basis of ℤ ⊕ ℤ. 

Third Failed Implication 

The last incorrect implication is that “if 𝐺 is a free abelian group, then every generating set 

of 𝐺 contains a basis of 𝐹”. For example, consider the free abelian group of integer polynomials 

of degree 1 

                                             𝑃 = {𝑎0 + 𝑎1𝑋 | 𝑎𝑖 ∈ ℤ} 
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which has rank of 2. 

Consider 𝐴 = {2, 3, 𝑋} ⊂ 𝑃. Note that for every element 𝑎0 + 𝑎1𝑋 ∈ 𝑃 

𝑎0 + 𝑎1𝑋 = −𝑎0(2) + 𝑎0(3) + 𝑎1(𝑋) 

then 𝐴 generates 𝑃. But note that 

1. 𝐴 = {2, 3, 𝑋} ⊆ 𝐴 is not linearly independent. 

Note that for 𝑘1 = −3, 𝑘2 = 2, and 𝑘3 = 0, then 

𝑘12 + 𝑘23 + 𝑘3𝑋 = −3(2) + 2(3) + 0𝑋 = −6 + 6 + 0 = 0 

Thus, 𝑘12 + 𝑘23 + 𝑘3𝑋 = 0 has solution which is not only 𝑘𝑖 = 0.  

This shows that 𝐴 is not linearly independent. 

2. {2, 3} ⊂ 𝐴 is not linearly independent. 

Note that for 𝑘1 = −3, and 𝑘2 = 2 then 

            𝑘12 + 𝑘23 = −3(2) + 2(3) = −6 + 6 = 0 

Thus, 𝑘12 + 𝑘23 = 0 has solution which is not only 𝑘𝑖 = 0.  

This shows that {2,3} is not linearly independent. 

3. {2, 𝑋} ⊂ 𝐴 cannot generates 𝑃. 

Note that for 1 + 𝑋 ∈ 𝑃 

1 + 𝑋 ≠ 𝑘1(2) + 𝑘2𝑋 

for every 𝑘1, 𝑘2 ∈ ℤ, This is because 𝑘1(2) always form an even number, so it is impossible 

to produce the number 1 on 1 + 𝑋.  

This shows that {2, 𝑋} does not generate 𝑃.  

4. {3, 𝑋} ⊂ 𝐴 cannot generates 𝑃. 

Note that for 1 + 𝑋 ∈ 𝑃 

1 + 𝑋 ≠ 𝑘1(3) + 𝑘2𝑋 

for every 𝑘1, 𝑘2 ∈ ℤ, This is because 𝑘1(3) always form a multiple of 3, so it is impossible to 

produce the number 1 on 1 + 𝑋.  

This shows that {3, 𝑋} does not generate 𝑃. 

5. Neither {2}, {3}, nor {𝑋} can generate 𝑃. 

Based on the properties fulfilled by each subset of 𝐴 above, it can be seen that none of them can 

be a basis. Thus, 𝐴 does not contain a basis of 𝑃 even though it can generates 𝑃. 

4.       Conclusions 

There is an implication of linear independence in free abelian groups that is applied as well 

as linear independence in vector space. However, a certain implication cannot be applied to free 

abelian groups. This will be interesting for further research regarding the properties of the basis in 

free abelian groups whether they will be the same as the properties of the basis in real vector space 

or not. 
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