

Sustainable Pedagogy in E-Learning: Preparing Lifelong Learners for the Disruption Era

Maximus Gorky Sembiring*, Sri Wahyu Krida Sakti, Erman Arif, Suci Rahmadini, Yoga Muhamad Tampi
Universitas Terbuka

*Corresponding author e-mail : gorky@ecampus.ut.ac.id

Abstract

This inquiry presents a futuristic model of sustainable e-learning pedagogy that integrates innovation, inclusivity, and collaboration to empower lifelong learners, enhance global mobility, and build resilient learning ecosystems in the disruption era. This inquiry examines how sustainable e-learning pedagogy can prepare lifelong learners to navigate the disruption era, marked by technological acceleration, globalization, and uncertainty. It emphasizes the balance between innovation, inclusivity, and long-term educational resilience. This study utilizes a qualitative systematic literature review to synthesize global practices and theoretical comprehensions from Constructivism, Connectivism, and Self-Determination Theory. It analyzes the role of emerging tools: AI-driven Personalization, Extended Reality, Blockchain Credentialing, and Mobile Learning Ecosystems in fostering inclusive and future-ready pedagogy. The study identifies three key pillars of sustainable e-learning pedagogy: Resilient Pedagogy (enabling adaptability and agility in the era of disruption), Collaborative Intelligence (integrating human creativity with AI to enhance global research and knowledge exchange), and Sustainable Inclusivity (ensuring equitable access through universal design and adaptive learning pathways). Synchronously, they support lifelong learners while advancing global mobility in education and research. The results propose a futuristic pedagogical model that harmonizes sustainability, inclusivity, and innovation. By reframing e-learning both as a catalyst for lifelong learning and a driver of global collaboration, it contributes to building resilient, future-ready learning ecosystems.

Keywords: Sustainable Pedagogy, E-Learning, Lifelong Learning, Inclusivity, Innovation

1. Introduction

Sustainable pedagogy in e-learning is the compass of tomorrow. It guides lifelong learners to sail through the storms of disruption toward horizons of endless possibility!

Rationale. The disruption era has fundamentally reshaped the global education landscape. Rapid technological advances, such as artificial intelligence (AI), extended reality (XR), blockchain, and mobile learning, are revolutionizing the way knowledge is produced, accessed, and disseminated (Chan & Li, 2025). While these innovations create opportunities for personalized and borderless learning, they also raise critical challenges regarding equity, inclusivity, and sustainability (Naseer et al., 2024). In this context, e-learning pedagogy must evolve into a sustainable framework that not only supports lifelong learners in adapting to change but also contributes to building resilient, future-ready learning ecosystems (MuhammedZein & Abdullateef, 2025).

Urgency. The urgency of this inquiry stems from three interconnected realities. First, lifelong learners require new forms of pedagogical support to remain agile in the face of economic

volatility, technological disruption, and global crises. Second, existing e-learning models often prioritize technological efficiency over inclusivity and sustainability. Third, the international movement toward achieving Sustainable Development Goals (SDGs), particularly SDG 4 (Quality Education) and SDG 9 (Industry, Innovation, and Infrastructure), calls for education systems to integrate innovation with sustainable pedagogical practices. Addressing these issues is imperative for ensuring that no learner is left behind in the digital age (Alyoussef, 2023; Low, 2024; Nauli, 2022; Transforming Education Towards SDG 4, 2024).

Gaps and Questions. Although substantial research has been conducted on e-learning, three major gaps remain. First, studies often treat sustainability narrowly in ecological terms, neglecting its broader educational and social dimensions (Silva-Jean & Kneipp, 2024). Second, limited research exists on how inclusivity can be systematically embedded into e-learning pedagogy to ensure equitable participation across diverse learners and cultural contexts (Riedel et al., 2023). Third, few frameworks explicitly integrate sustainability, inclusivity, and innovation into a single pedagogical model for lifelong learners (Portuguez Castro & Gómez Zermeño, 2020).

Based on these gaps, this paper seeks to answer the following research questions: (i) How can sustainable e-learning pedagogy be conceptualized to address the challenges of the disruption era? (ii) What are the key pillars that ensure innovation, inclusivity, and resilience in e-learning pedagogy for lifelong learners? (iii) How can these pillars support global mobility and collaborative research excellence?

Objectives. The main aim of this paper is to develop a futuristic pedagogical model of sustainable e-learning that harmonizes innovation, inclusivity, and resilience for lifelong learners (Barikzai et al., 2024). Besides, additional objectives include: (i) Analyzing how emerging technologies (AI, XR, Blockchain, and mobile ecosystems) can serve as enablers of sustainable pedagogy. (ii) Identifying best practices and frameworks that integrate inclusivity and sustainability into e-learning design. (iii) Exploring how sustainable pedagogy can enhance global mobility, cross-border collaboration, and excellence in research.

Expected Results. This study is expected to yield a conceptual framework of Sustainable E-Learning Pedagogy grounded in three interrelated pillars: (i) Resilient Pedagogy, (ii) Collaborative Intelligence, and (iii) Sustainable Inclusivity. The framework will serve as a guide for educators, policymakers, and institutions to design inclusive and future-proof learning ecosystems. Furthermore, it is expected to contribute to global academic discourse by linking sustainable pedagogy with innovation-driven mobility and collaborative research (Merchán-Cruz et al., 2025; Nahar, 2024; Okoye et al., 2025).

Related Theories. Multiple theoretical foundations inform the inquiry. First is *Constructivism*: It provides the basis for learner-centered approaches, emphasizing active engagement and meaning-making (Almulla, 2023; Levin & Tsybulsky, 2017; Primarni et al., 2024). Second is *Connectivism*. It extends this by recognizing the importance of networks and digital connections in the acquisition of knowledge (Dziubaniuk et al., 2023; Sandri, 2022; Siemens, 2005). Third is *Self-Determination Theory*. It highlights the motivational aspects of

autonomy, competence, and relatedness, which are crucial for sustaining learner engagement in digital environments (Brenner, 2022; Chiu et al., 2024; Deci & Ryan, 1985, 2000; Ryan & Deci, 2000).

Collectively, these theories offer a robust lens for integrating inclusivity, sustainability, and innovation into e-learning pedagogy, enabling lifelong learners to thrive in a rapidly changing global context.

2. Research Method

Research Approach. This study employs a *qualitative systematic literature review* (SLR) to explore sustainable e-learning pedagogy for lifelong learners in the disruption era (Atkinson & Cipriani, 2018; Dickinson, 1995; Gupta et al., 2024). The SLR approach is particularly suited for synthesizing dispersed scholarly contributions across multidisciplinary fields (education, technology, and sustainability) while ensuring methodological transparency and replicability. The review emphasizes conceptual depth rather than statistical generalization, focusing on developing a futuristic pedagogical model grounded in existing theories and practices (Randles & Finnegan, 2023; Siddaway et al., 2019).

Data Sources and Search Strategy. Relevant literature was retrieved from reputable academic databases (Scopus, Web of Science, ERIC, and ScienceDirect), complemented by selected conference proceedings and policy documents (UNESCO, OECD). These databases were chosen for their comprehensive coverage of peer-reviewed studies and global perspectives. A structured search strategy was designed using Boolean operators to capture key concepts. The main keywords included combinations of sustainable pedagogy or sustainability in education; e-learning, online learning, or distance education; lifelong learning or lifelong learners; inclusivity or equity; and innovation, emerging technologies, or digital transformation. Most search was restricted to publications from 2015–2025, ensuring the inclusion of the most recent and relevant insights, particularly those reflecting technological advancements and sustainability frameworks over the past decade.

Selection Criteria. The inclusion and exclusion criteria were established to maintain focus and rigor. Inclusion criteria include: (i) Peer-reviewed journal articles, book chapters, and policy reports. (ii) Studies explicitly addressing e-learning pedagogy in relation to sustainability, inclusivity, or innovation. (iii) Research focusing on higher education, lifelong learning, or cross-border/global contexts. Exclusion criteria include: (i) Studies are limited to ecological sustainability without pedagogical implications. (ii) Articles with insufficient methodological detail or limited relevance to e-learning pedagogy. (iii) Publications in languages other than English, to ensure consistency in analysis.

Review Process and Data Analysis. The review followed a seven-step process, they are: (i) Identification, i.e., initial search yielded approximately 80 related and relevant articles. (ii) Screening, i.e., removal of duplicates and title/abstract screening to exclude irrelevant works. (iii) Eligibility, i.e., full-text review of shortlisted articles to assess alignment with inclusion criteria.

(iv) Quality Appraisal, i.e., assessment of methodological rigor using a qualitative appraisal checklist (credibility, transferability, dependability, and confirmability). (v) Thematic Coding, i.e., extraction of key themes related to sustainability, inclusivity, innovation, and global mobility in e-learning pedagogy. (vii) Synthesis, i.e., integration of findings into a conceptual framework outlining the three proposed pillars: Resilient Pedagogy, Collaborative Intelligence, and Sustainable Inclusivity. Furthermore, the thematic analysis was conducted to identify patterns and gaps across the reviewed literature. Codes were developed inductively from the data, with iterative refinement to ensure coherence with the research questions. Cross-validation was carried out by comparing themes across different databases and disciplines, ensuring triangulation and robustness of findings.

3. Results and Discussions

3.1. Overview of Findings

The systematic review underscores a clear trend: There is growing scholarly attention to the convergence of sustainability, e-learning pedagogy, and lifelong learning. This reflects the urgency of preparing learners not only with digital competencies but also with the resilience, adaptability, and inclusivity required to thrive in an uncertain, disruption-driven world (Education Policy Outlook 2023, 2023; Wang et al., 2024).

A critical observation, however, is that technological innovation dominates much of the current discourse. While advanced tools (AI, VR, gamification, and adaptive learning systems) receive significant emphasis, the pedagogical integration of sustainability and inclusivity remains comparatively underexplored (Çelik & Baturay, 2024). This gap suggests that the future of e-learning pedagogy must move beyond a mere fascination with technology and toward embedding sustainable educational practices that support equity, accessibility, and long-term impact (Global Education Monitoring Report 2023, 2023).

From the thematic synthesis, three interrelated pillars emerge as the foundation of sustainable e-learning pedagogy: (i) Resilient Pedagogy – ensuring adaptive, flexible, and context-sensitive teaching strategies that can withstand disruptions and empower learners in diverse settings. (ii) Collaborative Intelligence – harnessing both human and artificial intelligence to foster co-creation, peer learning, and knowledge networks that extend across global boundaries. (iii) Sustainable Inclusivity – embedding principles of equity, accessibility, and cultural responsiveness into digital education so that no learner is left behind.

Collectively, these pillars form a holistic framework for e-learning that supports global mobility, lifelong learning, and educational justice. They offer not only a roadmap for responding to disruption but also a transformative agenda for reimaging pedagogy in ways that balance innovation with sustainability.

Further Discussion. While these three pillars provide a promising framework, the review raises an important question: How can institutions systematically integrate sustainability and

inclusivity into digital pedagogy without allowing technological innovation alone to dominate the discourse? This guiding question sets the stage for the deeper exploration in the subsequent sections (Deroncele-Acosta et al., 2023; Navas-Bonilla et al., 2025).

3.2. Resilient Pedagogy: Adaptability and Agility

Resilient pedagogy emphasizes adaptability, flexibility, and preparedness in teaching and learning, ensuring continuity in the face of disruption (Bartusevičienė et al., 2021). By integrating multimodal delivery, learner-centered strategies, and responsive course design, it equips both institutions and learners to withstand uncertainty while maintaining educational quality (Alenezi, 2023).

Findings: Resilient pedagogy emphasizes learners' and institutions' capacity to adapt to rapid changes in technology, socio-economic shifts, and global crises. Literature consistently shows that resilience in e-learning involves flexible instructional design, digital literacy, and the integration of adaptive technologies such as AI-driven learning analytics and mobile ecosystems. These enable personalized learning pathways that can adjust to learners' needs and changing contexts.

Critical Analysis: Resilience is not merely about "surviving disruption" but about transforming challenges into opportunities for innovation. For example, during the COVID-19 pandemic, universities worldwide shifted abruptly to online modes. Institutions that embedded resilience (through flexible curricula, digital readiness, and hybrid learning designs) were able to sustain student engagement and global collaborations more effectively than those with rigid systems.

Connection to Global Mobility and Lifelong Learning: Resilient pedagogy prepares lifelong learners to remain employable and adaptable in dynamic labor markets while fostering global academic mobility. Learners who develop resilience can navigate diverse digital ecosystems, engage in international online collaborations, and continuously re-skill, thereby contributing to global research excellence.

Accordingly, resilient pedagogy provides the foundation for sustainability, ensuring that learning systems remain adaptive and responsive in times of disruption (Didham & Ofei-Manu, 2020). This resilience not only safeguards educational continuity but also sets the stage for collaboration and inclusivity to flourish.

3.3. Collaborative Intelligence: Human–AI Synergy and Global Research Networks

Collaborative intelligence highlights the synergy between human creativity and technological augmentation, fostering shared knowledge creation and problem-solving (Dang et al., 2025). Through peer engagement, global learning networks, and the ethical use of AI, this pillar redefines learning as a collective enterprise that transcends geographical and disciplinary boundaries (Zamiri & Esmaeili, 2024).

Findings: The concept of collaborative intelligence arises from integrating human creativity, peer-to-peer collaboration, and AI-driven systems in e-learning environments. Literature highlights the transformative role of emerging technologies, including AI tutors, XR-enabled research simulations, and blockchain-based credentialing, in facilitating collaboration across institutions and borders.

Critical Analysis: While AI enhances efficiency and personalization, its greatest pedagogical impact lies in augmenting rather than replacing human creativity and critical thinking. Collaborative intelligence encourages co-creation of knowledge, where learners, educators, and intelligent systems collectively engage in problem-solving. However, the ethical dimensions of AI use, such as data privacy, bias, and accountability, remain significant challenges requiring sustainable solutions.

Connection to Global Mobility and Lifelong Learning: Collaborative intelligence fosters transnational academic partnerships by enabling seamless research collaboration and recognition of achievements across borders. Blockchain, for example, ensures portability of academic credentials, thereby enhancing global learner mobility. For lifelong learners, this means opportunities to participate in international research projects, co-create solutions to address global challenges, and strengthen their intercultural competence.

Subsequently, collaborative intelligence transforms resilience into shared innovation, enabling learners and institutions to co-create knowledge that transcends individual or local limitations (Okada et al., 2025). By fostering global networks of inquiry, it bridges the foundation of resilience with the ethical imperative of inclusivity (Strielkowski et al., 2025).

3.4 Sustainable Inclusivity: Equity and Access in Digital Learning

Sustainable inclusivity serves as the ethical anchor of e-learning pedagogy, ensuring that innovation does not exacerbate inequality but instead expands access and opportunity (McCotter, 2023). Grounded in principles of equity, accessibility, and cultural responsiveness, it positions lifelong learning as a right for all learners, not a privilege for the few (Meland & Brion-Meisels, 2024).

Findings: Inclusivity remains a critical concern in e-learning. The review shows persistent gaps in access to infrastructure, digital literacy, and culturally responsive content, particularly in developing contexts. Sustainable inclusivity emphasizes not only bridging the digital divide but also embedding universal design principles, multilingual learning resources, and adaptive pathways that respect diverse learner needs.

Critical Analysis: Sustainable inclusivity extends beyond access—it requires the systematic integration of equity and diversity into pedagogical design. Without inclusivity, sustainability risks becoming exclusive to privileged groups, exacerbating global inequalities. Studies highlight the importance of open educational resources (OERs), mobile-first design for accessibility, and policies that ensure gender equity and disability inclusion in digital environments.

Connection to Global Mobility and Lifelong Learning: By embedding inclusivity, e-learning enables broader participation in global academic mobility, ensuring that learners from marginalized or underrepresented communities can access and contribute to international knowledge networks. For lifelong learners, inclusivity ensures continuity of learning regardless of socio-economic background, geographic location, or personal circumstances. That is the key to fostering equitable global research excellence.

Consequently, as the ethical compass of the framework, sustainable inclusivity ensures that the benefits of resilience and collaboration are distributed equitably across diverse learners and contexts. Together, the three pillars form an integrated foundation for a sustainable, future-oriented e-learning pedagogy (Purvis et al., 2019; Rossi & Brischetto, 2024; Strielkowski et al., 2025).

3.5. Interconnection of the Three Pillars

These three pillars, i.e., Resilient Pedagogy, Collaborative Intelligence, and Sustainable Inclusivity, are mutually reinforcing. Resilience ensures adaptability, collaborative intelligence promotes global partnerships, and inclusivity guarantees that all learners can participate in and benefit from these opportunities (Equity and Inclusion in Education, 2023; Sánchez-García et al., 2024). Together, they form the foundation of a futuristic pedagogical model that positions sustainable e-learning as both a catalyst for lifelong learning and a driver of global research collaboration (Abusamra et al., 2025; Mariyono & Nur Alif Hd, 2025).

4. Conclusion

This paper has proposed a futuristic and sustainable pedagogical model for e-learning that balances innovation, inclusivity, and resilience to prepare lifelong learners for the disruption era (Ossiannilsson, 2022). By synthesizing theoretical perspectives from Constructivism, Connectivism, and Self-Determination Theory with global practices and emerging technologies, the study highlights three key pillars: Resilient Pedagogy, Collaborative Intelligence, and Sustainable Inclusivity.

Uniqueness. The novelty of this study lies in framing sustainability not only as environmental or institutional continuity but as pedagogical resilience. That is the ability of e-learning systems to adapt, include, and innovate in the face of technological, social, and global disruptions. The integration of AI-driven personalization, Extended Reality, Blockchain credentialing, and mobile learning ecosystems into an inclusive and collaborative framework represents an innovative rethinking of e-learning as a dynamic driver of global mobility and lifelong learning (Abulibdeh, 2024; Nazari et al., 2024).

Practical Implications. For educators and institutions, the model provides a roadmap for designing e-learning environments that are adaptable, equitable, and globally connected. Policies should prioritize inclusivity through universal design, invest in adaptive technologies, and foster global partnerships that expand mobility opportunities for learners. For learners, the model offers

pathways to autonomous, personalized, and future-ready competencies that align with the demands of the disruption era. For policymakers, it suggests the urgent need to harmonize sustainability, inclusivity, and innovation in national and international education agendas.

Future Research Directions. This inquiry opens several avenues for further study: (i) Empirical Validation – Testing the proposed model in diverse educational contexts to evaluate its impact on learner outcomes and institutional resilience. (ii) Technological Integration – Exploring how specific innovations such as generative AI, immersive XR learning, and blockchain ecosystems can be optimized to ensure inclusivity and equity. (iii) Global Mobility Dynamics – Investigating how sustainable e-learning pedagogy can enhance international academic collaboration, cross-border credential recognition, and workforce readiness in the disruption era. (iv) Longitudinal Studies – Assessing how sustainable pedagogical practices influence learners' lifelong trajectories, particularly in developing regions or marginalized communities.

Briefly, sustainable pedagogy in e-learning is not merely an educational adaptation to disruption but a strategic foundation for lifelong learning, global mobility, and resilient knowledge ecosystems. By uniting inclusivity, innovation, and sustainability, this model charts a transformative pathway for higher education and society in an increasingly uncertain yet opportunity-rich future (Carayannis & Morawska-Jancelewicz, 2022).

The following are several key takeaways, namely: (i) Novel Contribution: Introduces a sustainability-centered pedagogical model combining Resilient Pedagogy, Collaborative Intelligence, and Sustainable Inclusivity (Ziafati Bafarasat et al., 2025). (ii) Practical Roadmap: Guides educators, learners, and policymakers in creating adaptable, inclusive, and globally connected e-learning ecosystems (Ika Sari et al., 2024). (iii) Future-Ready Competencies: Empowers learners with autonomous, personalized, and lifelong learning pathways for the disruption era (Knott et al., 2024). (iv) Research Agenda: Calls for empirical validation, technological optimization, and global mobility studies to strengthen sustainable e-learning (Derbas et al., 2025).

In the age of disruption, education must no longer be a fixed path, but a living rhythm, i.e., sustainable, inclusive, and ever-evolving so that every learner becomes both navigator and pioneer!

References

Abulibdeh, A. (2024). Towards zero-carbon, resilient, and community-integrated smart schools and campuses: A review. *World Development Sustainability*, 5, 100193. <https://doi.org/10.1016/j.wds.2024.100193>

Abusamra, A., Muhtaseb, K., & Awawdeh, R. (2025). How should E-learning be conceptualized in the context of higher education in the MENA region? *Social Sciences & Humanities Open*, 12, 101808. <https://doi.org/10.1016/j.ssaoh.2025.101808>

Alenezi, M. (2023). Digital Learning and Digital Institution in Higher Education. *Education Sciences*, 13(1), 88. <https://doi.org/10.3390/educsci13010088>

Almulla, M. A. (2023). Constructivism learning theory: A paradigm for students' critical thinking, creativity, and problem solving to affect academic performance in higher education. *Cogent Education*, 10(1). <https://doi.org/10.1080/2331186X.2023.2172929>

Alyoussef, I. Y. (2023). Acceptance of e-learning in higher education: The role of task-technology fit with the information systems success model. *Helijon*, 9(3), e13751. <https://doi.org/10.1016/j.helijon.2023.e13751>

Atkinson, L. Z., & Cipriani, A. (2018). How to carry out a literature search for a systematic review: a practical guide. *BJPsych Advances*, 24(2), 74–82. <https://doi.org/10.1192/bja.2017.3>

Barikzai, S., Bharathi S, V., & Perdana, A. (2024). Challenges and strategies in e-learning adoption in emerging economies: a scoping review. *Cogent Education*, 11(1). <https://doi.org/10.1080/2331186X.2024.2400415>

Bartusevičienė, I., Pazaver, A., & Kitada, M. (2021). Building a resilient university: ensuring academic continuity—transition from face-to-face to online in the COVID-19 pandemic. *WMU Journal of Maritime Affairs*, 20(2), 151–172. <https://doi.org/10.1007/s13437-021-00239-x>

Brenner, C. A. (2022). Self-regulated learning, self-determination theory and teacher candidates' development of competency-based teaching practices. *Smart Learning Environments*, 9(1), 3. <https://doi.org/10.1186/s40561-021-00184-5>

Carayannis, E. G., & Morawska-Jancelewicz, J. (2022). The Futures of Europe: Society 5.0 and Industry 5.0 as Driving Forces of Future Universities. *Journal of the Knowledge Economy*, 13(4), 3445–3471. <https://doi.org/10.1007/s13132-021-00854-2>

Çelik, F., & Baturay, M. H. (2024). Technology and innovation in shaping the future of education. *Smart Learning Environments*, 11(1), 54. <https://doi.org/10.1186/s40561-024-00339-0>

Chan, J., & Li, Y. (2025). *Enhancing Higher Education with Generative AI: A Multimodal Approach for Personalised Learning* (pp. 50–57). https://doi.org/10.1007/978-981-96-8931-6_5

Chiu, T. K. F., Falloon, G., Song, Y., Wong, V. W. L., Zhao, L., & Ismailov, M. (2024). A self-determination theory approach to teacher digital competence development. *Computers & Education*, 214, 105017. <https://doi.org/10.1016/j.compedu.2024.105017>

Dang, B., Huynh, L., Gul, F., Rosé, C., Järvelä, S., & Nguyen, A. (2025). Human–AI collaborative learning in mixed reality: Examining the cognitive and socio-emotional interactions. *British Journal of Educational Technology*, 56(5), 2078–2101. <https://doi.org/10.1111/bjet.13607>

Deci, E. L., & Ryan, R. M. (1985). *Intrinsic motivation and self-determination in human behavior*. Plenum.

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11, 227–268.

Derbas, A., Ayyoub, H. Y., Hyarat, T., Hnaif, A., Al-Quraan, R., Al-Serhan, A., Al-Tawil, M., Al-Awamleh, A., Quteshat, W., & Al Zyoud, I. (2025). The role of E-learning in institutions of higher education in achieving the goals of sustainable development in Jordan. *PLOS ONE*, 20(3), e0319192. <https://doi.org/10.1371/journal.pone.0319192>

Deroncele-Acosta, A., Palacios-Núñez, M. L., & Toribio-López, A. (2023). Digital Transformation and Technological Innovation on Higher Education Post-COVID-19. *Sustainability*, 15(3), 2466. <https://doi.org/10.3390/su15032466>

Dickinson, L. (1995). Autonomy and motivation a literature review. *System*, 23(2), 165–174. [https://doi.org/10.1016/0346-251X\(95\)00005-5](https://doi.org/10.1016/0346-251X(95)00005-5)

Didham, R. J., & Ofei-Manu, P. (2020). Adaptive capacity as an educational goal to advance policy for integrating DRR into quality education for sustainable development. *International Journal of Disaster Risk Reduction*, 47, 101631. <https://doi.org/10.1016/j.ijdrr.2020.101631>

Dziubaniuk, O., Ivanova-Gongne, M., & Nyholm, M. (2023). Learning and teaching sustainable business in the digital era: a connectivism theory approach. *International Journal of Educational Technology in Higher Education*, 20(1), 20. <https://doi.org/10.1186/s41239-023-00390-w>

Education Policy Outlook 2023. (2023). OECD. <https://doi.org/10.1787/f5063653-en>

Equity and Inclusion in Education. (2023). OECD. <https://doi.org/10.1787/e9072e21-en>

Global Education Monitoring Report 2023: Technology in education: A tool on whose terms? (2023). GEM Report UNESCO. <https://doi.org/10.54676/UZQV8501>

Gupta, P., Ding, B., Guan, C., & Ding, D. (2024). Generative AI: A systematic review using topic modeling techniques. *Data and Information Management*, 8(2), 100066. <https://doi.org/10.1016/j.dim.2024.100066>

Ika Sari, G., Winasis, S., Pratiwi, I., Wildan Nuryanto, U., & Basrowi. (2024). Strengthening digital literacy in Indonesia: Collaboration, innovation, and sustainability education. *Social Sciences & Humanities Open*, 10, 101100. <https://doi.org/10.1016/j.ssaho.2024.101100>

Knott, N., Decker, M., Laupichler, M. C., Pinski, M., Buchholtz, N., Bata, K., & Schultz, B. (2024). Developing a holistic AI literacy assessment matrix – Bridging generic, domain-specific, and ethical competencies. *Computers and Education Open*, 6, 100177. <https://doi.org/10.1016/j.caeo.2024.100177>

Levin, I., & Tsybulsky, D. (2017). The Constructionist Learning Approach in the Digital Age. *Creative Education*, 08(15), 2463–2475. <https://doi.org/10.4236/ce.2017.815169>

Low, E. L. (2024). Rethinking teacher education in pandemic times and beyond. *Educational Research for Policy and Practice*, 23(3), 395–406. <https://doi.org/10.1007/s10671-023-09337-4>

Mariyono, D., & Nur Alif Hd, A. (2025). AI's role in transforming learning environments: a review of collaborative approaches and innovations. *Quality Education for All*, 2(1), 265–288. <https://doi.org/10.1108/QEA-08-2024-0071>

McCotter, S. (2023). An Interdisciplinary Scoping Review of Sustainable E-Learning within Human Resources Higher Education Provision. *Sustainability*, 15(21), 15282. <https://doi.org/10.3390/su152115282>

Meland, E. A., & Brion-Meisels, G. (2024). An integrative model for culturally sustaining SEL in the classroom. *Social and Emotional Learning: Research, Practice, and Policy*, 3, 100042. <https://doi.org/10.1016/j.sel.2024.100042>

Merchán-Cruz, E. A., Gabelaia, I., Savrasovs, M., Hansen, M. F., Soe, S., Rodríguez-Cañizo, R. G., & Aragón-Camarasa, G. (2025). Trust by Design: An Ethical Framework for Collaborative Intelligence Systems in Industry 5.0. *Electronics*, 14(10), 1952. <https://doi.org/10.3390/electronics14101952>

MuhammedZein, F. A., & Abdullateef, S. T. (2025). Quality Education for Sustainable Development: Evolving Pedagogies to Maintain a Balance Between Knowledge, Skills, and Values-Case Study of Saudi Universities. *Sustainability*, 17(2), 635. <https://doi.org/10.3390/su17020635>

Nahar, S. (2024). Modeling the effects of artificial intelligence (AI)-based innovation on sustainable development goals (SDGs): Applying a system dynamics perspective in a cross-country setting. *Technological Forecasting and Social Change*, 201, 123203. <https://doi.org/10.1016/j.techfore.2023.123203>

Naseer, F., Khan, M. N., Tahir, M., Addas, A., & Aejaz, S. M. H. (2024). Integrating deep learning techniques for personalized learning pathways in higher education. *Helijon*, 10(11), e32628. <https://doi.org/10.1016/j.helijon.2024.e32628>

Nauli, B. P. (2022). Sustainable Development Goals (SDGs) 9: Industry, Innovation, and Infrastructure during the COVID-19 Pandemic in Indonesia. *Jurnal Hubungan Internasional*, 10(2), 96–107. <https://doi.org/10.18196/jhi.v10i2.12196>

Navas-Bonilla, C. del R., Guerra-Arango, J. A., Oviedo-Guado, D. A., & Murillo-Noriega, D. E. (2025). Inclusive education through technology: a systematic review of types, tools and characteristics. *Frontiers in Education*, 10. <https://doi.org/10.3389/feduc.2025.1527851>

Nazari, Z., Vahidi, A. R., & Musilek, P. (2024). Blockchain and Artificial Intelligence Non-Formal Education System (BANFES). *Education Sciences*, 14(8), 881. <https://doi.org/10.3390/educsci14080881>

Okada, A., Sherborne, T., Panselinus, G., & Kolionis, G. (2025). Fostering Transversal Skills Through Open Schooling Supported by the CARE-KNOW-DO Pedagogical Model and the UNESCO AI Competencies Framework. *International Journal of Artificial Intelligence in Education*. <https://doi.org/10.1007/s40593-025-00458-w>

Okoye, K., Campos, E., Das, A., Chakraborty, V., Ghosh, M., Chakrabarti, A., & Hosseini, S. (2025). Impact of digitalized-education upon sustainable education and practice: A systematic review and meta-analysis of literature based on pre-intra-and-post pandemic and rural education development. *Sustainable Futures*, 10, 100851. <https://doi.org/10.1016/j.sfr.2025.100851>

Ossiannilsson, E. S. I. (2022). Resilient Agile Education for Lifelong Learning Post-Pandemic to Meet the United Nations Sustainability Goals. *Sustainability*, 14(16), 10376. <https://doi.org/10.3390/su141610376>

Portuguez Castro, M., & Gómez Zermeño, M. G. (2020). Challenge-Based Learning: Innovative Pedagogy for Sustainability through e-Learning in Higher Education. *Sustainability*, 12(10), 4063. <https://doi.org/10.3390/su12104063>

Primarni, A., Hoxha, A., & Rzayev, R. (2024). The Role of Constructivism in Modern Educational Philosophy: A Comparative Analysis. *International Journal of Educational Narratives*, 2(6), 546–556. <https://doi.org/10.70177/ijen.v2i6.1691>

Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. *Sustainability Science*, 14(3), 681–695. <https://doi.org/10.1007/s11625-018-0627-5>

Randles, R., & Finnegan, A. (2023). Guidelines for writing a systematic review. *Nurse Education Today*, 125, 105803. <https://doi.org/10.1016/j.nedt.2023.105803>

Riedel, A. S., Beatson, A. T., & Gottlieb, U. (2023). Inclusivity and Diversity: A Systematic Review of Strategies Employed in the Higher Education Marketing Discipline. *Journal of Marketing Education*, 45(2), 123–140. <https://doi.org/10.1177/02734753231159010>

Rossi, E., & Brischetto, A. (2024). Contribution of the ‘Equality, Diversity, and Inclusion’ Concept to Design Education: A Systematic Literature Review. *Sustainability*, 16(19), 8478. <https://doi.org/10.3390/su16198478>

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. *American Psychologist*, 55, 68–78.

Sánchez-García, E., Martínez-Falcó, J., Marco-Lajara, B., & Manresa-Marhuenda, E. (2024). Revolutionizing the circular economy through new technologies: A new era of sustainable

progress. *Environmental Technology & Innovation*, 33, 103509. <https://doi.org/10.1016/j.eti.2023.103509>

Sandri, O. (2022). What do we mean by ‘pedagogy’ in sustainability education? *Teaching in Higher Education*, 27(1), 114–129. <https://doi.org/10.1080/13562517.2019.1699528>

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. *Annual Review of Psychology*, 70(1), 747–770. <https://doi.org/10.1146/annurev-psych-010418-102803>

Siemens, G. (2005). Connectivism: A learning theory for the digital age. *Journal of Instructional Technology & Distance Learning*, 2, 3–10.

Silva-Jean, M. da, & Kneipp, J. M. (2024). “Social learning, innovation, and sustainability: The search for directions beyond a systematic literature review.” *Heliyon*, 10(7), e28431. <https://doi.org/10.1016/j.heliyon.2024.e28431>

Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakimova, G., & Vasileva, T. (2025). <scp>AI</scp> -driven adaptive learning for sustainable educational transformation. *Sustainable Development*, 33(2), 1921–1947. <https://doi.org/10.1002/sd.3221>

Transforming Education Towards SDG 4: Report of a global survey on country actions to transform education. (2024). UNESCO. <https://doi.org/10.54675/OBBC3458>

Wang, C., Chen, X., Yu, T., Liu, Y., & Jing, Y. (2024). Education reform and change driven by digital technology: a bibliometric study from a global perspective. *Humanities and Social Sciences Communications*, 11(1), 256. <https://doi.org/10.1057/s41599-024-02717-y>

Zamiri, M., & Esmaeili, A. (2024). Methods and Technologies for Supporting Knowledge Sharing within Learning Communities: A Systematic Literature Review. *Administrative Sciences*, 14(1), 17. <https://doi.org/10.3390/admsci14010017>

Ziafati Bafarasat, A., Baker, M., Cheshmehzangi, A., Goodspeed, R., Scott, M., Sharifi, A., Shirazi, M. R., Valler, D., Van Assche, K., Butt, A., Gkartzios, M., Román-López, E., Stangl, P., Vitale Brovarone, E., Pull, E., Van den Broeck, P., Córdoba-Hernández, R., Akbari, P., Cotella, G., ... Katsigianni, X. (2025). Planning competencies and transformative pedagogy for sustainable development. *Progress in Planning*, 200, 100996. <https://doi.org/10.1016/j.progress.2025.100996>