The Role of Ishikawa Quality Control Tools in Scientific Research: A Review
Keywords:
Ishikawa, Quality Control (QC) tools, VOSviewer, Company SectorsAbstract
Dr. Ishikawa stated that 95% of problems in the process can be solved using 7 quality control tools. This study aims to review the role of Ishikawa quality control tools in scientific research. A study was conducted on articles from Sciencedirect in 2023 using VOSviewer and article content. Most keywords that appear in VOSviewer are related to Industry 4.0 technology. Quality Control (QC) tools are applied to various types of research methods and company sectors, where a study uses 1-5 QC tools in a study. Most articles use experimental methods, and most studies fall within the trading sector. The most frequently used QC tools are histograms, flow charts and scatter diagrams. There has been no research that uses check sheets and cause and effect diagrams, research in the financial sector or research that combines experimental methods and case studies. The results of the study indicate that QC tools function as supporters in an article of scientific research, not as variables (main keywords) in an article of scientific research.
References
Ahmed, M., Ayub, A., Sheikh, N. A., Shahzad, M. W., Haroon, M., & Imran, M. (2023). Thermodynamic optimization and performance study of supercritical CO2 thermodynamic power cycles with dry cooling using response surface method. International Communications in Heat and Mass Transfer, 142. https://doi.org/10.1016/j.icheatmasstransfer.2023.106675
Alegria, F. A. C. (2023). Bias of the independently based gain and offset error in ADC testing using the histogram method. Measurement: Journal of the International Measurement Confederation, 218. https://doi.org/10.1016/j.measurement.2023.113181
Al-Mansor, E., Al-Jabbar, M., Ben Ishak, A., & Abdel-Khalek, S. (2023). Medical image edge detection in the framework of quantum representations. Alexandria Engineering Journal, 81, 234–242. https://doi.org/10.1016/j.aej.2023.09.008
Alshaeer, H. A. Y., Irwan, J. M., Alshalif, A. F., Noman, E. A., Amran, M., Gamil, Y., Alhokabi, A., & Al-Gheethi, A. A. (2023). Optimisation of compressive strength of foamed concrete with a novel Aspergillus iizukae EAN605 fungus. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02400
Alves, M., Li, Y., & Pimenta, S. (2023). Spatial variability and characteristic length-scales of strain fields in tow-based discontinuous composites: Characterisation and modelling. Composites Part B: Engineering, 262. https://doi.org/10.1016/j.compositesb.2023.110789
Antony, J., McDermott, O., Sony, M., Fernandes, M. M., & Ribeiro, R. V. C. (2021). A study on the Ishikawa’s original basic tools of quality control in South American companies: results from a pilot survey and directions for further research. TQM Journal, 33(8), 1770–1786. https://doi.org/10.1108/TQM-01-2021-0004
Atif, M., Lilge, L., Hanif, A., Ahmad, S., & Devanesan, S. (2023). Photoacoustic imaging a PDT response marker for monitoring vasculature changes. Journal of King Saud University - Science, 35(2). https://doi.org/10.1016/j.jksus.2022.102480
Bai, R., Wang, Z., Lu, H., Chen, C., Liu, X., Deng, G., He, Q., Ren, Z., Ding, B., & Ye, X. (2023). Earthquake-triggered landslide interpretation model of high resolution remote sensing imageries based on bag of visual word. Earthquake Research Advances, 3(2), 100196. https://doi.org/10.1016/j.eqrea.2022.100196
Bazoobandi, P., Karimi, H. R., Mousavi, S. R., Karimi, F., & Aliha, M. R. M. (2023). Full range of mode I and II cracking performance of asphalt mixtures containing low to high reclaimed asphalt pavement (RAP) contents; modified by recycling agent and substituting of a softer binder. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02487
Bechlenberg, A., Wei, Y., Jayawardhana, B., & Vakis, A. I. (2023). Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays. Renewable Energy, 211, 1–12. https://doi.org/10.1016/j.renene.2023.04.076
Ben, U. C., Mbonu, C. C., Thompson, C. E., Ekwok, S. E., Akpan, A. E., Akpabio, I., Eldosouky, A. M., Abdelrahman, K., Alzahrani, H., Gómez-Ortiz, D., & Pham, L. T. (2023). Investigating the applicability of the social spider optimization for the inversion of magnetic anomalies caused by dykes. Journal of King Saud University - Science, 35(3). https://doi.org/10.1016/j.jksus.2023.102569
Bevans, B., Ramalho, A., Smoqi, Z., Gaikwad, A., Santos, T. G., Rao, P., & Oliveira, J. P. (2023). Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis. Materials and Design, 225. https://doi.org/10.1016/j.matdes.2022.111480
Bhattarai, B., Subedi, R., Gaire, R. R., Vazquez, E., & Stoyanov, D. (2023). Histogram of Oriented Gradients meet deep learning: A novel multi-task deep network for 2D surgical image semantic segmentation. Medical Image Analysis, 85. https://doi.org/10.1016/j.media.2023.102747
Chakraborty, S., & Suri, M. (2023). Exploiting switching properties of non-volatile memory chips for data security applications. Memories - Materials, Devices, Circuits and Systems, 4, 100044. https://doi.org/10.1016/j.memori.2023.100044
Chaudhari, J. P., Mewada, H., Patel, A. V., & Mahant, K. (2023). Automated bacteria genera classification using histogram-oriented optimized capsule network. Engineering Science and Technology, an International Journal, 46. https://doi.org/10.1016/j.jestch.2023.101500
Chaudhuri, C. H., & Choudhury, D. (2023). Dynamic analysis of buried pipeline with and without barrier system subjected to underground detonation. Defence Technology. https://doi.org/10.1016/j.dt.2023.02.017
Chen, Q., Sabir, Z., Asif Zahoor Raja, M., Gao, W., & Mehmet Baskonus, H. (2023). A fractional study based on the economic and environmental mathematical model. Alexandria Engineering Journal, 65, 761–770. https://doi.org/10.1016/j.aej.2022.09.033
Chou, C. H., Chai, J. W., Wang, L. C., Fu, J., Lin, Y. S., Chang, P. J., & Chen, W. H. (2023). Lesion size of early cerebral infarction on a Non-Contrast CT influences detection ability in Cascade Mask Region-Convolutional neural networks. Biomedical Signal Processing and Control, 86. https://doi.org/10.1016/j.bspc.2023.105065
Contuzzi, N., & Casalino, G. (2023). On modelling Nd:Yag nanosecond laser milling process by neural network and multi response prediction methods. Optik, 284. https://doi.org/10.1016/j.ijleo.2023.170937
Costa, M., Di Masi, S., Garcia-Cruz, A., Piletsky, S. A., & Malitesta, C. (2023). Disposable electrochemical sensor based on ion imprinted polymeric receptor for Cd(II) ion monitoring in waters. Sensors and Actuators B: Chemical, 383. https://doi.org/10.1016/j.snb.2023.133559
Cox, J. R., Kipling, I., & Gibbons, G. J. (2023). Ensuring supply chain integrity for material extrusion 3D printed polymer parts. Additive Manufacturing, 62. https://doi.org/10.1016/j.addma.2023.103403
Cuesta Parra, D. M., Correa Mahecha, F., Rubio Pinzon, A. F., Bustos, D. R., Teran Llorente, L. A., & Jimenez Jimenez, M. F. (2023). A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts. Water Science and Engineering. https://doi.org/10.1016/j.wse.2023.05.005
das Vitorias do Nascimento, M., de Medeiros Melo Neto, O., de Figueiredo Lopes Lucena, A. E., Guerra, T. D., da Silva Lopes, A. M., & do Nascimento, E. P. (2023). Investigation of the adhesion conditions of the micro-surfacing applied on asphalt concrete. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2023.e02155
Ding, D., Shen, Y., Jiang, J., Yuan, Q., Xiu, T., Ni, K., & Liu, C. (2023). Data collection and information security analysis in sports teaching system based on intelligent sensor. Measurement: Sensors, 28. https://doi.org/10.1016/j.measen.2023.100854
Do, Q., Seo, W., & Shin, C. W. (2023). Automatic algorithm for determining bone and soft-tissue factors in dual-energy subtraction chest radiography. Biomedical Signal Processing and Control, 80. https://doi.org/10.1016/j.bspc.2022.104354
Elshafei, B., Peña, A., Popov, A., Giddings, D., Ren, J., Xu, D., & Mao, X. (2023). Offshore wind resource assessment based on scarce spatio-temporal measurements using matrix factorization. Renewable Energy, 202, 1215–1225. https://doi.org/10.1016/j.renene.2022.12.006
G, R. P., & K, K. (2023). A novel framework using binary attention mechanism based deep convolution neural network for face emotion recognition. Measurement: Sensors, 30. https://doi.org/10.1016/j.measen.2023.100881
Gaidai, O., Xu, X., & Xing, Y. (2023). Novel deconvolution method for extreme FPSO vessel hawser tensions during offloading operations. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2022.100828
George, J., Singh, A., & Kumar Bhaisare, A. (2018). A Study of Basic 7 Quality Control Tools & Techniques for Continuous Improvement A Study of Basic 7 Quality Control Tools and Techniques for Continuous Improvement. In Journal of Engineering & Technology" TIT (Excellence). https://www.researchgate.net/publication/334056570
Ghareeb, M., Salama, R., & ElSherbini, S. (2023). Impact of the sustainable waterfront proposed development of Bani-Suif corniche on the hydraulics of the Nile River. Ain Shams Engineering Journal, 14(1). https://doi.org/10.1016/j.asej.2022.101845
Gong, J., Yang, X., Qian, K., Chen, Z., & Han, T. (2023). Application of improved bubble entropy and machine learning in the adaptive diagnosis of rotating machinery faults. Alexandria Engineering Journal, 80, 22–40. https://doi.org/10.1016/j.aej.2023.08.006
Gou, A., Sun, H., Liu, C., Zeng, X., & Fan, Y. (2023). A novel fast intra algorithm for VVC based on histogram of oriented gradient. Journal of Visual Communication and Image Representation, 95. https://doi.org/10.1016/j.jvcir.2023.103888
Gülçür, M., Brown, E., Gough, T., & Whiteside, B. (2023). Characterisation of microneedle replication and flow behaviour in ultrasonic micro-injection moulding through design of experiments. Journal of Manufacturing Processes, 102, 513–527. https://doi.org/10.1016/j.jmapro.2023.07.068
Han, Y., & Li, H. (2023). A new, improved method to identify reaction mechanisms based on the shape of derivative thermogravimetric curves. Case Studies in Thermal Engineering, 45. https://doi.org/10.1016/j.csite.2023.102993
Harikrishnan, D., Sunilkumar, N., Shelby, J., Kishor, N., & Remya, G. (2023). An effective authentication scheme for a secured IRIS recognition system based on a novel encoding technique. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100626
Henningsson, A., Wills, A. G., Hall, S. A., Hendriks, J., Wright, J. P., Schön, T. B., & Poulsen, H. F. (2023). Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurements. Computer Methods in Applied Mechanics and Engineering, 417. https://doi.org/10.1016/j.cma.2023.116417
Hrishikesh Jaware, T., Ramesh Patil, V., Nayak, C., Elmasri, A., Ali, N., & Mishra, P. (2023). A novel approach for brain tissue segmentation and classification in infants’ MRI images based on seeded region growing, foster corner detection theory, and sparse autoencoder. Alexandria Engineering Journal, 76, 289–305. https://doi.org/10.1016/j.aej.2023.06.040
Hu, X. L., Zhang, J. N., Zhang, S. Y., Zhou, P. P., & Zhang, Y. (2023). A variable sampling interval one-sided CUSUM control chart for monitoring the multivariate coefficient of variation. Journal of King Saud University - Science, 35(7). https://doi.org/10.1016/j.jksus.2023.102845
Junzhe, Z., Fuqiang, J., Yupeng, C., Weiyi, W., & Qing, W. (2023). A water surface garbage recognition method based on transfer learning and image enhancement. Results in Engineering, 19. https://doi.org/10.1016/j.rineng.2023.101340
K, A., N, D., T, D., B B, B. R., N, B. D., & V, N. (2023). Effect of multi filters in glucoma detection using random forest classifier. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100566
Kaswan, P., Kumar, M., & Kumari, M. (2023). Analysis of a bioconvection flow of magnetocross nanofluid containing gyrotactic microorganisms with activation energy using an artificial neural network scheme. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.101015
Khan, Z., Shafique, M., Jabeen, N., Naz, S. A., Yasmeen, K., Ejaz, U., & Sohail, M. (2023). Protease from Bacillus subtilis ZMS-2: Evaluation of production dynamics through Response Surface Methodology and application in leather tannery. Journal of King Saud University - Science, 35(4). https://doi.org/10.1016/j.jksus.2023.102643
Kodaira, T., Sasmal, K., Miratsu, R., Fukui, T., Zhu, T., & Waseda, T. (2023). Uncertainty in wave hindcasts in the North Atlantic Ocean. Marine Structures, 89. https://doi.org/10.1016/j.marstruc.2023.103370
Kumar, N. R., & Y, R. K. (2023). Efficient medical image retrieval system using Geometric Invariant Point Bilateral Transformation (GIPBT). Measurement: Sensors, 27. https://doi.org/10.1016/j.measen.2023.100705
Lai, Y. (2023). Optimization of urban and rural ecological spatial planning based on deep learning under the concept of sustainable development. Results in Engineering, 19. https://doi.org/10.1016/j.rineng.2023.101343
Li, G., Deng, H., & Yang, H. (2023). Traffic flow prediction model based on improved variational mode decomposition and error correction. Alexandria Engineering Journal, 76, 361–389. https://doi.org/10.1016/j.aej.2023.06.008
Li, G., Wu, H., & Yang, H. (2023). A hybrid forecasting model of carbon emissions with optimized VMD and error correction. Alexandria Engineering Journal, 81, 210–233. https://doi.org/10.1016/j.aej.2023.09.018
Lidmar, J., Edelbro, C., Vatcher, J., & Spross, J. (2023). Estimation of small failure probabilities using the Accelerated Weight Histogram method. Probabilistic Engineering Mechanics, 74. https://doi.org/10.1016/j.probengmech.2023.103501
Liu, G., Tian, S., Xu, G., Zhang, C., & Cai, M. (2023). Combination of effective color information and machine learning for rapid prediction of soil water content. Journal of Rock Mechanics and Geotechnical Engineering, 15(9), 2441–2457. https://doi.org/10.1016/j.jrmge.2022.12.029
Liu, X., Pan, X., Yu, Z., Ren, J., Zhuang, Y., & Yu, Q. (2023). A solid–liquid interface enhancement algorithm for X-ray in situ observation of space materials. Materials and Design, 228. https://doi.org/10.1016/j.matdes.2023.111852
Lv, Z., & Zhang, Z. (2023). Research on plant leaf recognition method based on multi-feature fusion in different partition blocks. Digital Signal Processing: A Review Journal, 134. https://doi.org/10.1016/j.dsp.2023.103907
M, R. V., V, B., & S, N. (2023). Optimization of wire-EDM process parameters for Ni–Ti-Hf shape memory alloy through particle swarm optimization and CNN-based SEM-image classification. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101141
Malagi, A. V., Kandasamy, D., Pushpam, D., Khare, K., Sharma, R., Kumar, R., Bakhshi, S., & Mehndiratta, A. (2023). IVIM-DKI with parametric reconstruction method for lymph node evaluation and characterization in lymphoma: A preliminary study comparison with FDG-PET/CT. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100928
Manatura, K., Chalermsinsuwan, B., Kaewtrakulchai, N., Chao, Y. C., & Li, Y. H. (2023). Co-torrefaction of rice straw and waste medium density fiberboard: A process optimization study using response surface methodology. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101139
Mauro, F., & Vassalos, D. (2023). The effect of the operational environment on the survivability of passenger ships. Ocean Engineering, 281. https://doi.org/10.1016/j.oceaneng.2023.114786
McDermott, O., Antony, J., & Sony, M. (2022). THE USE AND APPLICATION OF ISHIKAWA’S SEVEN BASIC TOOLS IN EUROPEAN ORGANISATIONS. International Journal for Quality Research, 16(4), 1071–1082. https://doi.org/10.24874/IJQR16.04-07
Mohtaram, S., Aryanfar, Y., Ghazy, A., Wu, W., Kaaniche, K., & Luis García Alcaraz, J. (2023). An innovative approach for utilizing waste heat of a triple-pressure cogeneration combined cycle power plant by employing TRR method and thermodynamic analysis. Case Studies in Thermal Engineering, 49. https://doi.org/10.1016/j.csite.2023.103198
Moralidou, M., Di Laura, A., Henckel, J., & Hart, A. J. (2023). Can version of the proximal femur be used for CT planning uncemented femoral stems? Medical Engineering and Physics, 116. https://doi.org/10.1016/j.medengphy.2023.103985
Moses Obeti, A., Muhwezi, L., & Muhumuza Kakitahi, J. (2023). Investigating equipment productivity in feeder road maintenance in Uganda. Transportation Research Interdisciplinary Perspectives, 17. https://doi.org/10.1016/j.trip.2023.100756
Muhammad, S. (2015). Quality Improvement Of Fan Manufacturing Industry By Using Basic Seven Tools Of Quality: A Case Study. In Journal of Engineering Research and Applications www.ijera.com (Vol. 5). www.ijera.com
Mukhtarkhanov, M., Shehab, E., Araby, S., & Ali, M. H. (2023). Experimental study of wax-material support structure for fused deposition modeling printed parts with overhanging sections. International Journal of Lightweight Materials and Manufacture, 6(4), 534–542. https://doi.org/10.1016/j.ijlmm.2023.04.002
Munir, T., Hu, X., Kauppila, O., & Bergquist, B. (2023). Effect of measurement uncertainty on combined quality control charts. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108900
Nakkiew, W., & Poolperm, P. (2016). Application of Material Flow Cost Accounting (MFCA) and Quality Control Tools in Wooden Toys Product. Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management, 1–14. https://www.researchgate.net/publication/326506684
Nasim, M. A. G., Khan, O., Parvez, M., & Bhatt, B. K. (2023). Optimizing ultrasonic reactor operating variables using intelligent soft computing models for increased biodiesel production. Green Technologies and Sustainability, 1(3), 100033. https://doi.org/10.1016/j.grets.2023.100033
Navarro, V., Torres-Serra, J., Romero, E., & Asensio, L. (2023). Modeling the homogenization of a heterogeneous granular bentonite mixture. Computers and Geotechnics, 161. https://doi.org/10.1016/j.compgeo.2023.105572
Nazar, S., Yang, J., Amin, M. N., Khan, K., Javed, M. F., & Althoey, F. (2023). Formulation of estimation models for the compressive strength of concrete mixed with nanosilica and carbon nanotubes. Developments in the Built Environment, 13. https://doi.org/10.1016/j.dibe.2022.100113
Nisar, K. S., Sahar, F., Asif Zahoor Raja, M., & Shoaib, M. (2023). Intelligent neuro-computing to analyze the awareness programs of fractional epidemic system outbreaks. Journal of King Saud University - Science, 35(5). https://doi.org/10.1016/j.jksus.2023.102691
Nisar, K. S., Tabassum, R., Raja, M. A. Z., & Shoaib, M. (2023). Advanced Bio-Inspired computing paradigm for nonlinear smoking model. Alexandria Engineering Journal, 76, 411–427. https://doi.org/10.1016/j.aej.2023.06.032
Pei, X., Zhao, Y. hong, Chen, L., Guo, Q., Duan, Z., Pan, Y., & Hou, H. (2023). Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences. Materials and Design, 232. https://doi.org/10.1016/j.matdes.2023.112086
Rahmana Putra, N., Nur Rizkiyah, D., Idham, Z., Abbas Ahmad Zaini, M., Azizi Che Yunus, M., & Hazim Abdul Aziz, A. (2023). Optimization and solubilization of interest compounds from roselle in subcritical ethanol extraction (SEE). Alexandria Engineering Journal, 65, 59–74. https://doi.org/10.1016/j.aej.2022.09.037
Rahul, A., Lokesh, G., Goswami, S., Ponnalagu, R. N., & Sudha, R. (2023). Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis. Water Science and Engineering. https://doi.org/10.1016/j.wse.2023.08.001
Rana, P., Ma, J., Zhang, Y., & Gupta, G. (2023). FEM simulation and optimization for thermal performance of a hybrid magneto-nanofluid in an inclined free convective energy system. Alexandria Engineering Journal, 70, 45–59. https://doi.org/10.1016/j.aej.2023.02.027
Raza, S., Nadda, R., & Nirala, C. K. (2023). Sensors-based discharge data acquisition and response measurement in ultrasonic assisted micro-EDM drilling. Measurement: Sensors, 29. https://doi.org/10.1016/j.measen.2023.100858
Sabahno, H., & Amiri, A. (2023). New statistical and machine learning based control charts with variable parameters for monitoring generalized linear model profiles. Computers and Industrial Engineering, 184. https://doi.org/10.1016/j.cie.2023.109562
Sabir, Z., Ben Said, S., & Al-Mdallal, Q. (2023). A fractional order numerical study for the influenza disease mathematical model. Alexandria Engineering Journal, 65, 615–626. https://doi.org/10.1016/j.aej.2022.09.034
Salah, B., Alnahhal, M., & Ali, M. (2023). Risk prioritization using a modified FMEA analysis in industry 4.0. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2023.07.001
Sardar, A., Umer, S., Rout, R. K., & Pero, C. (2023). Face recognition system with hybrid template protection scheme for Cyber–Physical-Social Services. Pattern Recognition Letters, 174, 17–24. https://doi.org/10.1016/j.patrec.2023.08.011
Sarkar, M., & Mandal, A. (2023). SLAAHE: Selective Apex Adaptive Histogram Equalization. Franklin Open, 3, 100023. https://doi.org/10.1016/j.fraope.2023.100023
Sauceda, S., Lascano, S., Núñez, J., Parra, C., Arévalo, C., & Béjar, L. (2023). Effect of HVOF processing parameters on Cr3C2-NiCr hard coatings deposited on AISI 4140 steel. Engineering Science and Technology, an International Journal, 39. https://doi.org/10.1016/j.jestch.2023.101342
Sesta, V., Incoronato, A., Madonini, F., & Villa, F. (2023). Time-to-digital converters and histogram builders in SPAD arrays for pulsed-LiDAR. Measurement: Journal of the International Measurement Confederation, 212. https://doi.org/10.1016/j.measurement.2023.112705
Shaikh, I. A., Turakani, B., Malpani, J., Goudar, S. V., Mahnashi, M. H., Hamed Al-Serwi, R., Ghoneim, M. M., El-Sherbiny, M., Abdulaziz Mannasaheb, B., Alsaikhan, F., Sindagimath, V., Khan, A. A., Muddapur, U. M., Azzouz, S., Mohammed, T., & Shakeel Iqubal, S. M. (2023). Extracellular Protease Production, Optimization, and Partial Purification from Bacillus nakamurai PL4 and its Applications. Journal of King Saud University - Science, 35(1). https://doi.org/10.1016/j.jksus.2022.102429
Sharma, B. K., Sharma, P., Mishra, N. K., & Fernandez-Gamiz, U. (2023). Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: Artificial neural network approach. Alexandria Engineering Journal, 76, 101–130. https://doi.org/10.1016/j.aej.2023.06.014
Sharma, B. K., Sharma, P., Mishra, N. K., Noeiaghdam, S., & Fernandez-Gamiz, U. (2023). Bayesian regularization networks for micropolar ternary hybrid nanofluid flow of blood with homogeneous and heterogeneous reactions: Entropy generation optimization. Alexandria Engineering Journal, 77, 127–148. https://doi.org/10.1016/j.aej.2023.06.080
Shi, L., & Zhao, Y. feng. (2023). Urban feature shadow extraction based on high-resolution satellite remote sensing images. Alexandria Engineering Journal, 77, 443–460. https://doi.org/10.1016/j.aej.2023.06.046
Shibu, M., Kumar, K. P., Pillai, V. J., Murthy, H., & Chandra, S. (2023). Structural health monitoring using AI and ML based multimodal sensors data. Measurement: Sensors, 27. https://doi.org/10.1016/j.measen.2023.100762
Song, H., Pei, H., & Zhang, P. (2023). Probabilistic method for the size design of energy piles considering the uncertainty in soil parameters. Underground Space (China), 10, 37–54. https://doi.org/10.1016/j.undsp.2022.08.004
Soria-Garcia, A., Sanchez-Brea, L. M., del Hoyo, J., Torcal-Milla, F. J., & Gomez-Pedrero, J. A. (2023). Fourier series diffractive lens with extended depth of focus. Optics and Laser Technology, 164. https://doi.org/10.1016/j.optlastec.2023.109491
Srinivas, A., & Mosiganti, J. P. (2023). A brain stroke detection model using soft voting based ensemble machine learning classifier. Measurement: Sensors, 29. https://doi.org/10.1016/j.measen.2023.100871
Sunday, N., Settar, A., Chetehouna, K., & Gascoin, N. (2023). Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM. Petroleum Science, 20(2), 1183–1199. https://doi.org/10.1016/j.petsci.2022.10.008
Suo, Y., Zhao, Y. J., Fu, X. F., He, W. Y., & Pan, Z. J. (2023). Mixed-mode fracture behavior in deep shale reservoirs under different loading rates and temperatures. Petroleum Science. https://doi.org/10.1016/j.petsci.2023.05.009
Sutrisno, B. (2022). A Systematic Literature Review of Quality Seven Tools. IJIEM (Indonesian Journal of Industrial Engineering & Management), 3, 72–84. https://doi.org/10.22441/ijiem.v3i1
Talordphop, K., Sukparungsee, S., & Areepong, Y. (2023). On designing new mixed modified exponentially weighted moving average - exponentially weighted moving average control chart. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101152
Urmeneta, J., Izquierdo, J., & Leturiondo, U. (2023). A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines. Renewable Energy, 205, 281–292. https://doi.org/10.1016/j.renene.2023.01.035
Vidakis, N., Petousis, M., Karapidakis, E., Mountakis, N., David, C., & Sagris, D. (2023). Energy consumption versus strength in MEΧ 3D printing of polylactic acid. Advances in Industrial and Manufacturing Engineering, 6. https://doi.org/10.1016/j.aime.2023.100119
WANG, J., ZHANG, H., & MIAO, Q. (2023). Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis. Chinese Journal of Aeronautics, 36(4), 252–267. https://doi.org/10.1016/j.cja.2023.02.028
Wang, P., Liu, N., & Qiao, J. (2023). Application of machine vision image feature recognition in 3D map construction. Alexandria Engineering Journal, 64, 731–739. https://doi.org/10.1016/j.aej.2022.11.007
Wang, Z., Shi, M., Zhang, Y., Xie, J., Zhang, B., & Fu, Y. (2023). An Unmanned Crane System Based on 3D lidar in Anode Baking Workshop. Procedia CIRP, 119, 1252–1257. https://doi.org/10.1016/j.procir.2023.03.159
Widyaningdyah, A. U., & Aryani, Y. A. (2013). Intellectual Capital dan Keunggulan Kompetitif (Studi Empiris Perusahaan Manufaktur versi Jakarta Stock Industrial Classification-JASICA). Jurnal Akuntansi Dan Keuangan, 15(1). https://doi.org/10.9744/jak.15.1.1-14
Wong, P., Wong, W. K., Juwono, F. H., Lease, B. A., Gopal, L., & Chew, I. M. (2023). Sensor abnormality detection in multistage compressor units: A “white box” approach using tree-based genetic programming. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 5. https://doi.org/10.1016/j.prime.2023.100209
Wu, X., Wang, H., Zhang, Y., & Li, R. (2023). A secure visual framework for multi-index protection evaluation in networks. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2022.05.007
Xie, W., Dong, S., Sang, Y., Zhao, X., Zhang, X., & Liu, K. (2023). RACBase: A cloud-based database of recycled aggregate concrete durability. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2023.e02004
Yang, J., & Xuan, S. (2023). Bit depth enhancement method for low-contrast images based on sequence image fusion. Measurement: Sensors, 27. https://doi.org/10.1016/j.measen.2023.100801
Yin, G., Gao, J., Gao, J., Li, C., Jin, M., Shi, M., Tuo, H., & Wei, P. (2023). Crack identification method of highway tunnel based on image processing. Journal of Traffic and Transportation Engineering (English Edition), 10(3), 469–484. https://doi.org/10.1016/j.jtte.2022.06.006
Zhang, J., Zhou, Y., & Fang, F. (2023). Depth error correction for plenoptic cameras based on an innovative AR system combining geometrical waveguide and micro-lens array. Optics and Lasers in Engineering, 167. https://doi.org/10.1016/j.optlaseng.2023.107629
Zheng, Z. Y., Qiu, H. Y., Zhang, B. L., Guo, M. F., Lin, S., & Cai, W. Q. (2023). A novel flexible fault eliminator with active disturbance rejection and soft grid-connection in distribution networks. International Journal of Electrical Power and Energy Systems, 154. https://doi.org/10.1016/j.ijepes.2023.109425
Zhou, J., Dai, Y., Tao, M., Khandelwal, M., Zhao, M., & Li, Q. (2023). Estimating the mean cutting force of conical picks using random forest with salp swarm algorithm. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100892
Zhu, Y., Wu, J., Liu, X., Wu, J., Chai, K., Hao, G., & Liu, S. (2023). Hybrid scheme through read-first-LSTM encoder-decoder and broad learning system for bearings degradation monitoring and remaining useful life estimation. Advanced Engineering Informatics, 56. https://doi.org/10.1016/j.aei.2023.102014

Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Qomarotun Nurlaila, Zaenal, Hery

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.