The Role of Ishikawa Quality Control Tools in Scientific Research: A Review

Authors

  • Qomarotun Nurlaila Universitas Riau Kepulauan
  • Zaenal Unversitas Riau Kepulauan
  • Hery Unversitas Riau Kepulauan

Keywords:

Ishikawa, Quality Control (QC) tools, VOSviewer, Company Sectors

Abstract

Dr. Ishikawa stated that 95% of problems in the process can be solved using 7 quality control tools. This study aims to review the role of Ishikawa quality control tools in scientific research. A study was conducted on articles from Sciencedirect in 2023 using VOSviewer and article content. Most keywords that appear in VOSviewer are related to Industry 4.0 technology. Quality Control (QC) tools are applied to various types of research methods and company sectors, where a study uses 1-5 QC tools in a study. Most articles use experimental methods, and most studies fall within the trading sector. The most frequently used QC tools are histograms, flow charts and scatter diagrams. There has been no research that uses check sheets and cause and effect diagrams, research in the financial sector or research that combines experimental methods and case studies. The results of the study indicate that QC tools function as supporters in an article of scientific research, not as variables (main keywords) in an article of scientific research.

Author Biographies

Zaenal, Unversitas Riau Kepulauan

Industrial Engineering

Hery, Unversitas Riau Kepulauan

Industrial engineering

References

Ahmed, M., Ayub, A., Sheikh, N. A., Shahzad, M. W., Haroon, M., & Imran, M. (2023). Thermodynamic optimization and performance study of supercritical CO2 thermodynamic power cycles with dry cooling using response surface method. International Communications in Heat and Mass Transfer, 142. https://doi.org/10.1016/j.icheatmasstransfer.2023.106675

Alegria, F. A. C. (2023). Bias of the independently based gain and offset error in ADC testing using the histogram method. Measurement: Journal of the International Measurement Confederation, 218. https://doi.org/10.1016/j.measurement.2023.113181

Al-Mansor, E., Al-Jabbar, M., Ben Ishak, A., & Abdel-Khalek, S. (2023). Medical image edge detection in the framework of quantum representations. Alexandria Engineering Journal, 81, 234–242. https://doi.org/10.1016/j.aej.2023.09.008

Alshaeer, H. A. Y., Irwan, J. M., Alshalif, A. F., Noman, E. A., Amran, M., Gamil, Y., Alhokabi, A., & Al-Gheethi, A. A. (2023). Optimisation of compressive strength of foamed concrete with a novel Aspergillus iizukae EAN605 fungus. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02400

Alves, M., Li, Y., & Pimenta, S. (2023). Spatial variability and characteristic length-scales of strain fields in tow-based discontinuous composites: Characterisation and modelling. Composites Part B: Engineering, 262. https://doi.org/10.1016/j.compositesb.2023.110789

Antony, J., McDermott, O., Sony, M., Fernandes, M. M., & Ribeiro, R. V. C. (2021). A study on the Ishikawa’s original basic tools of quality control in South American companies: results from a pilot survey and directions for further research. TQM Journal, 33(8), 1770–1786. https://doi.org/10.1108/TQM-01-2021-0004

Atif, M., Lilge, L., Hanif, A., Ahmad, S., & Devanesan, S. (2023). Photoacoustic imaging a PDT response marker for monitoring vasculature changes. Journal of King Saud University - Science, 35(2). https://doi.org/10.1016/j.jksus.2022.102480

Bai, R., Wang, Z., Lu, H., Chen, C., Liu, X., Deng, G., He, Q., Ren, Z., Ding, B., & Ye, X. (2023). Earthquake-triggered landslide interpretation model of high resolution remote sensing imageries based on bag of visual word. Earthquake Research Advances, 3(2), 100196. https://doi.org/10.1016/j.eqrea.2022.100196

Bazoobandi, P., Karimi, H. R., Mousavi, S. R., Karimi, F., & Aliha, M. R. M. (2023). Full range of mode I and II cracking performance of asphalt mixtures containing low to high reclaimed asphalt pavement (RAP) contents; modified by recycling agent and substituting of a softer binder. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02487

Bechlenberg, A., Wei, Y., Jayawardhana, B., & Vakis, A. I. (2023). Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays. Renewable Energy, 211, 1–12. https://doi.org/10.1016/j.renene.2023.04.076

Ben, U. C., Mbonu, C. C., Thompson, C. E., Ekwok, S. E., Akpan, A. E., Akpabio, I., Eldosouky, A. M., Abdelrahman, K., Alzahrani, H., Gómez-Ortiz, D., & Pham, L. T. (2023). Investigating the applicability of the social spider optimization for the inversion of magnetic anomalies caused by dykes. Journal of King Saud University - Science, 35(3). https://doi.org/10.1016/j.jksus.2023.102569

Bevans, B., Ramalho, A., Smoqi, Z., Gaikwad, A., Santos, T. G., Rao, P., & Oliveira, J. P. (2023). Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis. Materials and Design, 225. https://doi.org/10.1016/j.matdes.2022.111480

Bhattarai, B., Subedi, R., Gaire, R. R., Vazquez, E., & Stoyanov, D. (2023). Histogram of Oriented Gradients meet deep learning: A novel multi-task deep network for 2D surgical image semantic segmentation. Medical Image Analysis, 85. https://doi.org/10.1016/j.media.2023.102747

Chakraborty, S., & Suri, M. (2023). Exploiting switching properties of non-volatile memory chips for data security applications. Memories - Materials, Devices, Circuits and Systems, 4, 100044. https://doi.org/10.1016/j.memori.2023.100044

Chaudhari, J. P., Mewada, H., Patel, A. V., & Mahant, K. (2023). Automated bacteria genera classification using histogram-oriented optimized capsule network. Engineering Science and Technology, an International Journal, 46. https://doi.org/10.1016/j.jestch.2023.101500

Chaudhuri, C. H., & Choudhury, D. (2023). Dynamic analysis of buried pipeline with and without barrier system subjected to underground detonation. Defence Technology. https://doi.org/10.1016/j.dt.2023.02.017

Chen, Q., Sabir, Z., Asif Zahoor Raja, M., Gao, W., & Mehmet Baskonus, H. (2023). A fractional study based on the economic and environmental mathematical model. Alexandria Engineering Journal, 65, 761–770. https://doi.org/10.1016/j.aej.2022.09.033

Chou, C. H., Chai, J. W., Wang, L. C., Fu, J., Lin, Y. S., Chang, P. J., & Chen, W. H. (2023). Lesion size of early cerebral infarction on a Non-Contrast CT influences detection ability in Cascade Mask Region-Convolutional neural networks. Biomedical Signal Processing and Control, 86. https://doi.org/10.1016/j.bspc.2023.105065

Contuzzi, N., & Casalino, G. (2023). On modelling Nd:Yag nanosecond laser milling process by neural network and multi response prediction methods. Optik, 284. https://doi.org/10.1016/j.ijleo.2023.170937

Costa, M., Di Masi, S., Garcia-Cruz, A., Piletsky, S. A., & Malitesta, C. (2023). Disposable electrochemical sensor based on ion imprinted polymeric receptor for Cd(II) ion monitoring in waters. Sensors and Actuators B: Chemical, 383. https://doi.org/10.1016/j.snb.2023.133559

Cox, J. R., Kipling, I., & Gibbons, G. J. (2023). Ensuring supply chain integrity for material extrusion 3D printed polymer parts. Additive Manufacturing, 62. https://doi.org/10.1016/j.addma.2023.103403

Cuesta Parra, D. M., Correa Mahecha, F., Rubio Pinzon, A. F., Bustos, D. R., Teran Llorente, L. A., & Jimenez Jimenez, M. F. (2023). A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts. Water Science and Engineering. https://doi.org/10.1016/j.wse.2023.05.005

das Vitorias do Nascimento, M., de Medeiros Melo Neto, O., de Figueiredo Lopes Lucena, A. E., Guerra, T. D., da Silva Lopes, A. M., & do Nascimento, E. P. (2023). Investigation of the adhesion conditions of the micro-surfacing applied on asphalt concrete. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2023.e02155

Ding, D., Shen, Y., Jiang, J., Yuan, Q., Xiu, T., Ni, K., & Liu, C. (2023). Data collection and information security analysis in sports teaching system based on intelligent sensor. Measurement: Sensors, 28. https://doi.org/10.1016/j.measen.2023.100854

Do, Q., Seo, W., & Shin, C. W. (2023). Automatic algorithm for determining bone and soft-tissue factors in dual-energy subtraction chest radiography. Biomedical Signal Processing and Control, 80. https://doi.org/10.1016/j.bspc.2022.104354

Elshafei, B., Peña, A., Popov, A., Giddings, D., Ren, J., Xu, D., & Mao, X. (2023). Offshore wind resource assessment based on scarce spatio-temporal measurements using matrix factorization. Renewable Energy, 202, 1215–1225. https://doi.org/10.1016/j.renene.2022.12.006

G, R. P., & K, K. (2023). A novel framework using binary attention mechanism based deep convolution neural network for face emotion recognition. Measurement: Sensors, 30. https://doi.org/10.1016/j.measen.2023.100881

Gaidai, O., Xu, X., & Xing, Y. (2023). Novel deconvolution method for extreme FPSO vessel hawser tensions during offloading operations. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2022.100828

George, J., Singh, A., & Kumar Bhaisare, A. (2018). A Study of Basic 7 Quality Control Tools & Techniques for Continuous Improvement A Study of Basic 7 Quality Control Tools and Techniques for Continuous Improvement. In Journal of Engineering & Technology" TIT (Excellence). https://www.researchgate.net/publication/334056570

Ghareeb, M., Salama, R., & ElSherbini, S. (2023). Impact of the sustainable waterfront proposed development of Bani-Suif corniche on the hydraulics of the Nile River. Ain Shams Engineering Journal, 14(1). https://doi.org/10.1016/j.asej.2022.101845

Gong, J., Yang, X., Qian, K., Chen, Z., & Han, T. (2023). Application of improved bubble entropy and machine learning in the adaptive diagnosis of rotating machinery faults. Alexandria Engineering Journal, 80, 22–40. https://doi.org/10.1016/j.aej.2023.08.006

Gou, A., Sun, H., Liu, C., Zeng, X., & Fan, Y. (2023). A novel fast intra algorithm for VVC based on histogram of oriented gradient. Journal of Visual Communication and Image Representation, 95. https://doi.org/10.1016/j.jvcir.2023.103888

Gülçür, M., Brown, E., Gough, T., & Whiteside, B. (2023). Characterisation of microneedle replication and flow behaviour in ultrasonic micro-injection moulding through design of experiments. Journal of Manufacturing Processes, 102, 513–527. https://doi.org/10.1016/j.jmapro.2023.07.068

Han, Y., & Li, H. (2023). A new, improved method to identify reaction mechanisms based on the shape of derivative thermogravimetric curves. Case Studies in Thermal Engineering, 45. https://doi.org/10.1016/j.csite.2023.102993

Harikrishnan, D., Sunilkumar, N., Shelby, J., Kishor, N., & Remya, G. (2023). An effective authentication scheme for a secured IRIS recognition system based on a novel encoding technique. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100626

Henningsson, A., Wills, A. G., Hall, S. A., Hendriks, J., Wright, J. P., Schön, T. B., & Poulsen, H. F. (2023). Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurements. Computer Methods in Applied Mechanics and Engineering, 417. https://doi.org/10.1016/j.cma.2023.116417

Hrishikesh Jaware, T., Ramesh Patil, V., Nayak, C., Elmasri, A., Ali, N., & Mishra, P. (2023). A novel approach for brain tissue segmentation and classification in infants’ MRI images based on seeded region growing, foster corner detection theory, and sparse autoencoder. Alexandria Engineering Journal, 76, 289–305. https://doi.org/10.1016/j.aej.2023.06.040

Hu, X. L., Zhang, J. N., Zhang, S. Y., Zhou, P. P., & Zhang, Y. (2023). A variable sampling interval one-sided CUSUM control chart for monitoring the multivariate coefficient of variation. Journal of King Saud University - Science, 35(7). https://doi.org/10.1016/j.jksus.2023.102845

Junzhe, Z., Fuqiang, J., Yupeng, C., Weiyi, W., & Qing, W. (2023). A water surface garbage recognition method based on transfer learning and image enhancement. Results in Engineering, 19. https://doi.org/10.1016/j.rineng.2023.101340

K, A., N, D., T, D., B B, B. R., N, B. D., & V, N. (2023). Effect of multi filters in glucoma detection using random forest classifier. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100566

Kaswan, P., Kumar, M., & Kumari, M. (2023). Analysis of a bioconvection flow of magnetocross nanofluid containing gyrotactic microorganisms with activation energy using an artificial neural network scheme. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.101015

Khan, Z., Shafique, M., Jabeen, N., Naz, S. A., Yasmeen, K., Ejaz, U., & Sohail, M. (2023). Protease from Bacillus subtilis ZMS-2: Evaluation of production dynamics through Response Surface Methodology and application in leather tannery. Journal of King Saud University - Science, 35(4). https://doi.org/10.1016/j.jksus.2023.102643

Kodaira, T., Sasmal, K., Miratsu, R., Fukui, T., Zhu, T., & Waseda, T. (2023). Uncertainty in wave hindcasts in the North Atlantic Ocean. Marine Structures, 89. https://doi.org/10.1016/j.marstruc.2023.103370

Kumar, N. R., & Y, R. K. (2023). Efficient medical image retrieval system using Geometric Invariant Point Bilateral Transformation (GIPBT). Measurement: Sensors, 27. https://doi.org/10.1016/j.measen.2023.100705

Lai, Y. (2023). Optimization of urban and rural ecological spatial planning based on deep learning under the concept of sustainable development. Results in Engineering, 19. https://doi.org/10.1016/j.rineng.2023.101343

Li, G., Deng, H., & Yang, H. (2023). Traffic flow prediction model based on improved variational mode decomposition and error correction. Alexandria Engineering Journal, 76, 361–389. https://doi.org/10.1016/j.aej.2023.06.008

Li, G., Wu, H., & Yang, H. (2023). A hybrid forecasting model of carbon emissions with optimized VMD and error correction. Alexandria Engineering Journal, 81, 210–233. https://doi.org/10.1016/j.aej.2023.09.018

Lidmar, J., Edelbro, C., Vatcher, J., & Spross, J. (2023). Estimation of small failure probabilities using the Accelerated Weight Histogram method. Probabilistic Engineering Mechanics, 74. https://doi.org/10.1016/j.probengmech.2023.103501

Liu, G., Tian, S., Xu, G., Zhang, C., & Cai, M. (2023). Combination of effective color information and machine learning for rapid prediction of soil water content. Journal of Rock Mechanics and Geotechnical Engineering, 15(9), 2441–2457. https://doi.org/10.1016/j.jrmge.2022.12.029

Liu, X., Pan, X., Yu, Z., Ren, J., Zhuang, Y., & Yu, Q. (2023). A solid–liquid interface enhancement algorithm for X-ray in situ observation of space materials. Materials and Design, 228. https://doi.org/10.1016/j.matdes.2023.111852

Lv, Z., & Zhang, Z. (2023). Research on plant leaf recognition method based on multi-feature fusion in different partition blocks. Digital Signal Processing: A Review Journal, 134. https://doi.org/10.1016/j.dsp.2023.103907

M, R. V., V, B., & S, N. (2023). Optimization of wire-EDM process parameters for Ni–Ti-Hf shape memory alloy through particle swarm optimization and CNN-based SEM-image classification. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101141

Malagi, A. V., Kandasamy, D., Pushpam, D., Khare, K., Sharma, R., Kumar, R., Bakhshi, S., & Mehndiratta, A. (2023). IVIM-DKI with parametric reconstruction method for lymph node evaluation and characterization in lymphoma: A preliminary study comparison with FDG-PET/CT. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100928

Manatura, K., Chalermsinsuwan, B., Kaewtrakulchai, N., Chao, Y. C., & Li, Y. H. (2023). Co-torrefaction of rice straw and waste medium density fiberboard: A process optimization study using response surface methodology. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101139

Mauro, F., & Vassalos, D. (2023). The effect of the operational environment on the survivability of passenger ships. Ocean Engineering, 281. https://doi.org/10.1016/j.oceaneng.2023.114786

McDermott, O., Antony, J., & Sony, M. (2022). THE USE AND APPLICATION OF ISHIKAWA’S SEVEN BASIC TOOLS IN EUROPEAN ORGANISATIONS. International Journal for Quality Research, 16(4), 1071–1082. https://doi.org/10.24874/IJQR16.04-07

Mohtaram, S., Aryanfar, Y., Ghazy, A., Wu, W., Kaaniche, K., & Luis García Alcaraz, J. (2023). An innovative approach for utilizing waste heat of a triple-pressure cogeneration combined cycle power plant by employing TRR method and thermodynamic analysis. Case Studies in Thermal Engineering, 49. https://doi.org/10.1016/j.csite.2023.103198

Moralidou, M., Di Laura, A., Henckel, J., & Hart, A. J. (2023). Can version of the proximal femur be used for CT planning uncemented femoral stems? Medical Engineering and Physics, 116. https://doi.org/10.1016/j.medengphy.2023.103985

Moses Obeti, A., Muhwezi, L., & Muhumuza Kakitahi, J. (2023). Investigating equipment productivity in feeder road maintenance in Uganda. Transportation Research Interdisciplinary Perspectives, 17. https://doi.org/10.1016/j.trip.2023.100756

Muhammad, S. (2015). Quality Improvement Of Fan Manufacturing Industry By Using Basic Seven Tools Of Quality: A Case Study. In Journal of Engineering Research and Applications www.ijera.com (Vol. 5). www.ijera.com

Mukhtarkhanov, M., Shehab, E., Araby, S., & Ali, M. H. (2023). Experimental study of wax-material support structure for fused deposition modeling printed parts with overhanging sections. International Journal of Lightweight Materials and Manufacture, 6(4), 534–542. https://doi.org/10.1016/j.ijlmm.2023.04.002

Munir, T., Hu, X., Kauppila, O., & Bergquist, B. (2023). Effect of measurement uncertainty on combined quality control charts. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108900

Nakkiew, W., & Poolperm, P. (2016). Application of Material Flow Cost Accounting (MFCA) and Quality Control Tools in Wooden Toys Product. Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management, 1–14. https://www.researchgate.net/publication/326506684

Nasim, M. A. G., Khan, O., Parvez, M., & Bhatt, B. K. (2023). Optimizing ultrasonic reactor operating variables using intelligent soft computing models for increased biodiesel production. Green Technologies and Sustainability, 1(3), 100033. https://doi.org/10.1016/j.grets.2023.100033

Navarro, V., Torres-Serra, J., Romero, E., & Asensio, L. (2023). Modeling the homogenization of a heterogeneous granular bentonite mixture. Computers and Geotechnics, 161. https://doi.org/10.1016/j.compgeo.2023.105572

Nazar, S., Yang, J., Amin, M. N., Khan, K., Javed, M. F., & Althoey, F. (2023). Formulation of estimation models for the compressive strength of concrete mixed with nanosilica and carbon nanotubes. Developments in the Built Environment, 13. https://doi.org/10.1016/j.dibe.2022.100113

Nisar, K. S., Sahar, F., Asif Zahoor Raja, M., & Shoaib, M. (2023). Intelligent neuro-computing to analyze the awareness programs of fractional epidemic system outbreaks. Journal of King Saud University - Science, 35(5). https://doi.org/10.1016/j.jksus.2023.102691

Nisar, K. S., Tabassum, R., Raja, M. A. Z., & Shoaib, M. (2023). Advanced Bio-Inspired computing paradigm for nonlinear smoking model. Alexandria Engineering Journal, 76, 411–427. https://doi.org/10.1016/j.aej.2023.06.032

Pei, X., Zhao, Y. hong, Chen, L., Guo, Q., Duan, Z., Pan, Y., & Hou, H. (2023). Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences. Materials and Design, 232. https://doi.org/10.1016/j.matdes.2023.112086

Rahmana Putra, N., Nur Rizkiyah, D., Idham, Z., Abbas Ahmad Zaini, M., Azizi Che Yunus, M., & Hazim Abdul Aziz, A. (2023). Optimization and solubilization of interest compounds from roselle in subcritical ethanol extraction (SEE). Alexandria Engineering Journal, 65, 59–74. https://doi.org/10.1016/j.aej.2022.09.037

Rahul, A., Lokesh, G., Goswami, S., Ponnalagu, R. N., & Sudha, R. (2023). Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis. Water Science and Engineering. https://doi.org/10.1016/j.wse.2023.08.001

Rana, P., Ma, J., Zhang, Y., & Gupta, G. (2023). FEM simulation and optimization for thermal performance of a hybrid magneto-nanofluid in an inclined free convective energy system. Alexandria Engineering Journal, 70, 45–59. https://doi.org/10.1016/j.aej.2023.02.027

Raza, S., Nadda, R., & Nirala, C. K. (2023). Sensors-based discharge data acquisition and response measurement in ultrasonic assisted micro-EDM drilling. Measurement: Sensors, 29. https://doi.org/10.1016/j.measen.2023.100858

Sabahno, H., & Amiri, A. (2023). New statistical and machine learning based control charts with variable parameters for monitoring generalized linear model profiles. Computers and Industrial Engineering, 184. https://doi.org/10.1016/j.cie.2023.109562

Sabir, Z., Ben Said, S., & Al-Mdallal, Q. (2023). A fractional order numerical study for the influenza disease mathematical model. Alexandria Engineering Journal, 65, 615–626. https://doi.org/10.1016/j.aej.2022.09.034

Salah, B., Alnahhal, M., & Ali, M. (2023). Risk prioritization using a modified FMEA analysis in industry 4.0. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2023.07.001

Sardar, A., Umer, S., Rout, R. K., & Pero, C. (2023). Face recognition system with hybrid template protection scheme for Cyber–Physical-Social Services. Pattern Recognition Letters, 174, 17–24. https://doi.org/10.1016/j.patrec.2023.08.011

Sarkar, M., & Mandal, A. (2023). SLAAHE: Selective Apex Adaptive Histogram Equalization. Franklin Open, 3, 100023. https://doi.org/10.1016/j.fraope.2023.100023

Sauceda, S., Lascano, S., Núñez, J., Parra, C., Arévalo, C., & Béjar, L. (2023). Effect of HVOF processing parameters on Cr3C2-NiCr hard coatings deposited on AISI 4140 steel. Engineering Science and Technology, an International Journal, 39. https://doi.org/10.1016/j.jestch.2023.101342

Sesta, V., Incoronato, A., Madonini, F., & Villa, F. (2023). Time-to-digital converters and histogram builders in SPAD arrays for pulsed-LiDAR. Measurement: Journal of the International Measurement Confederation, 212. https://doi.org/10.1016/j.measurement.2023.112705

Shaikh, I. A., Turakani, B., Malpani, J., Goudar, S. V., Mahnashi, M. H., Hamed Al-Serwi, R., Ghoneim, M. M., El-Sherbiny, M., Abdulaziz Mannasaheb, B., Alsaikhan, F., Sindagimath, V., Khan, A. A., Muddapur, U. M., Azzouz, S., Mohammed, T., & Shakeel Iqubal, S. M. (2023). Extracellular Protease Production, Optimization, and Partial Purification from Bacillus nakamurai PL4 and its Applications. Journal of King Saud University - Science, 35(1). https://doi.org/10.1016/j.jksus.2022.102429

Sharma, B. K., Sharma, P., Mishra, N. K., & Fernandez-Gamiz, U. (2023). Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: Artificial neural network approach. Alexandria Engineering Journal, 76, 101–130. https://doi.org/10.1016/j.aej.2023.06.014

Sharma, B. K., Sharma, P., Mishra, N. K., Noeiaghdam, S., & Fernandez-Gamiz, U. (2023). Bayesian regularization networks for micropolar ternary hybrid nanofluid flow of blood with homogeneous and heterogeneous reactions: Entropy generation optimization. Alexandria Engineering Journal, 77, 127–148. https://doi.org/10.1016/j.aej.2023.06.080

Shi, L., & Zhao, Y. feng. (2023). Urban feature shadow extraction based on high-resolution satellite remote sensing images. Alexandria Engineering Journal, 77, 443–460. https://doi.org/10.1016/j.aej.2023.06.046

Shibu, M., Kumar, K. P., Pillai, V. J., Murthy, H., & Chandra, S. (2023). Structural health monitoring using AI and ML based multimodal sensors data. Measurement: Sensors, 27. https://doi.org/10.1016/j.measen.2023.100762

Song, H., Pei, H., & Zhang, P. (2023). Probabilistic method for the size design of energy piles considering the uncertainty in soil parameters. Underground Space (China), 10, 37–54. https://doi.org/10.1016/j.undsp.2022.08.004

Soria-Garcia, A., Sanchez-Brea, L. M., del Hoyo, J., Torcal-Milla, F. J., & Gomez-Pedrero, J. A. (2023). Fourier series diffractive lens with extended depth of focus. Optics and Laser Technology, 164. https://doi.org/10.1016/j.optlastec.2023.109491

Srinivas, A., & Mosiganti, J. P. (2023). A brain stroke detection model using soft voting based ensemble machine learning classifier. Measurement: Sensors, 29. https://doi.org/10.1016/j.measen.2023.100871

Sunday, N., Settar, A., Chetehouna, K., & Gascoin, N. (2023). Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM. Petroleum Science, 20(2), 1183–1199. https://doi.org/10.1016/j.petsci.2022.10.008

Suo, Y., Zhao, Y. J., Fu, X. F., He, W. Y., & Pan, Z. J. (2023). Mixed-mode fracture behavior in deep shale reservoirs under different loading rates and temperatures. Petroleum Science. https://doi.org/10.1016/j.petsci.2023.05.009

Sutrisno, B. (2022). A Systematic Literature Review of Quality Seven Tools. IJIEM (Indonesian Journal of Industrial Engineering & Management), 3, 72–84. https://doi.org/10.22441/ijiem.v3i1

Talordphop, K., Sukparungsee, S., & Areepong, Y. (2023). On designing new mixed modified exponentially weighted moving average - exponentially weighted moving average control chart. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101152

Urmeneta, J., Izquierdo, J., & Leturiondo, U. (2023). A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines. Renewable Energy, 205, 281–292. https://doi.org/10.1016/j.renene.2023.01.035

Vidakis, N., Petousis, M., Karapidakis, E., Mountakis, N., David, C., & Sagris, D. (2023). Energy consumption versus strength in MEΧ 3D printing of polylactic acid. Advances in Industrial and Manufacturing Engineering, 6. https://doi.org/10.1016/j.aime.2023.100119

WANG, J., ZHANG, H., & MIAO, Q. (2023). Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis. Chinese Journal of Aeronautics, 36(4), 252–267. https://doi.org/10.1016/j.cja.2023.02.028

Wang, P., Liu, N., & Qiao, J. (2023). Application of machine vision image feature recognition in 3D map construction. Alexandria Engineering Journal, 64, 731–739. https://doi.org/10.1016/j.aej.2022.11.007

Wang, Z., Shi, M., Zhang, Y., Xie, J., Zhang, B., & Fu, Y. (2023). An Unmanned Crane System Based on 3D lidar in Anode Baking Workshop. Procedia CIRP, 119, 1252–1257. https://doi.org/10.1016/j.procir.2023.03.159

Widyaningdyah, A. U., & Aryani, Y. A. (2013). Intellectual Capital dan Keunggulan Kompetitif (Studi Empiris Perusahaan Manufaktur versi Jakarta Stock Industrial Classification-JASICA). Jurnal Akuntansi Dan Keuangan, 15(1). https://doi.org/10.9744/jak.15.1.1-14

Wong, P., Wong, W. K., Juwono, F. H., Lease, B. A., Gopal, L., & Chew, I. M. (2023). Sensor abnormality detection in multistage compressor units: A “white box” approach using tree-based genetic programming. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 5. https://doi.org/10.1016/j.prime.2023.100209

Wu, X., Wang, H., Zhang, Y., & Li, R. (2023). A secure visual framework for multi-index protection evaluation in networks. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2022.05.007

Xie, W., Dong, S., Sang, Y., Zhao, X., Zhang, X., & Liu, K. (2023). RACBase: A cloud-based database of recycled aggregate concrete durability. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2023.e02004

Yang, J., & Xuan, S. (2023). Bit depth enhancement method for low-contrast images based on sequence image fusion. Measurement: Sensors, 27. https://doi.org/10.1016/j.measen.2023.100801

Yin, G., Gao, J., Gao, J., Li, C., Jin, M., Shi, M., Tuo, H., & Wei, P. (2023). Crack identification method of highway tunnel based on image processing. Journal of Traffic and Transportation Engineering (English Edition), 10(3), 469–484. https://doi.org/10.1016/j.jtte.2022.06.006

Zhang, J., Zhou, Y., & Fang, F. (2023). Depth error correction for plenoptic cameras based on an innovative AR system combining geometrical waveguide and micro-lens array. Optics and Lasers in Engineering, 167. https://doi.org/10.1016/j.optlaseng.2023.107629

Zheng, Z. Y., Qiu, H. Y., Zhang, B. L., Guo, M. F., Lin, S., & Cai, W. Q. (2023). A novel flexible fault eliminator with active disturbance rejection and soft grid-connection in distribution networks. International Journal of Electrical Power and Energy Systems, 154. https://doi.org/10.1016/j.ijepes.2023.109425

Zhou, J., Dai, Y., Tao, M., Khandelwal, M., Zhao, M., & Li, Q. (2023). Estimating the mean cutting force of conical picks using random forest with salp swarm algorithm. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100892

Zhu, Y., Wu, J., Liu, X., Wu, J., Chai, K., Hao, G., & Liu, S. (2023). Hybrid scheme through read-first-LSTM encoder-decoder and broad learning system for bearings degradation monitoring and remaining useful life estimation. Advanced Engineering Informatics, 56. https://doi.org/10.1016/j.aei.2023.102014

Downloads

Published

2025-01-30

How to Cite

Nurlaila, Q., Arifin, Z., & Irawan, H. (2025). The Role of Ishikawa Quality Control Tools in Scientific Research: A Review. Forum for University Scholars in Interdisciplinary Opportunities and Networking, 1(1), 681–695. Retrieved from https://conference.ut.ac.id/index.php/fusion/article/view/3388

Conference Proceedings Volume

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.