Demand Forecasting on Sales at Grocery Stores using a Data Science Approach
Keywords:
ARIMA, Data Science, Demand Forecasting, Exponential Smoothing, VUCAAbstract
This study tries to present the application of predictive analysis to forecast sales transaction data for the next month. The analysis results are presented in the form of graphs and tables to provide a more comprehensive picture of each product's sales patterns and trends. Based on the graph presented, it can be seen that some types of merchandise do not experience sales activity in certain months. This can affect forecasting results, as analytical models cannot capture unstable or consistent sales patterns for those products. Fluctuations and instability in sales data can cause difficulties for predictive models in producing accurate forecasts. From the observation results, the ARIMA and Exponential Smoothing models have shown relatively good accuracy with a MAPE value of 23.646% in rice merchandise. All merchandise shows quite good results, but the accuracy value reaches 58.509% in sugar merchandise. This is because sugar sales data shows higher fluctuations and is unstable, making it more difficult for predictive models to produce accurate forecasts. Economic conditions, consumer trends, and market competition can affect sugar sales patterns and cause difficulties in modelling.
References
Abu-AlSondos, I. A. (2023). The impact of Business Intelligence System (BIS) on Quality of Strategic Decision-Making. International Journal of Data and Network Science, 7(4), 1901–1912. https://doi.org/10.5267/j.ijdns.2023.7.003
Bhatnagar, P., Katiyar, D. D., & Goel, G. (2022). Data Science Helping in Decision Making. International Journal for Research in Applied Science and Engineering Technology, 10(3), 1144–1147. https://doi.org/10.22214/ijraset.2022.40844
Bjaoui, M., Sakly, H., Said, M., Kraiem, N., & Bouhlel, M. S. (2020). Depth Insight for Data Scientist with RapidMiner « an Innovative Tool for AI and Big Data Towards Medical Applications». Proceedings of the 2nd International Conference on Digital Tools & Uses Congress, 1–6. https://doi.org/10.1145/3423603.3424059
Fadhillah, R., Kusnandar, D., Miftahul Huda, A., Kunci, K., & Saham Bank Mandiri, H. (2024). Pemodelan Arima-Ann Pada Harga Saham Bank Mandiri. Buletin Ilmiah Math. Stat. Dan Terapanya (Bimaster), 13(1), 117–126. https://doi.org/https://doi.org/10.26418/bbimst.v13i1.74370
Hou, J., Dong, Z., Zhou, J., & Liu, Z. (2024). Discovering Predictable Latent Factors for Time Series Forecasting. IEEE Transactions on Knowledge and Data Engineering, 36(10), 5106–5119. https://doi.org/10.1109/TKDE.2023.3335240
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts.
Kashpruk, N., Piskor-Ignatowicz, C., & Baranowski, J. (2023). Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Applied Sciences, 13(22), 12374. https://doi.org/10.3390/app132212374
Keiser, S., & Tortora, P. G. (2022). Demand Forecasting. In The Fairchild Books Dictionary of Fashion (pp. 42–42). Bloomsbury Publishing Plc. https://doi.org/10.5040/9781501365287.747
Kotu, V., & Deshpande, B. (2015). Getting Started with RapidMiner. In Predictive Analytics and Data Mining (pp. 371–406). Elsevier. https://doi.org/10.1016/B978-0-12-801460-8.00013-6
M K, N. P., Rastogi, S., & K, A. (2023). Demand Forecasting in Supply Chain Management using CNN-LSTM Hybrid Model. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–5. https://doi.org/10.1109/ICCCNT56998.2023.10307665
Ningrum, I. T. W., Pramana, E. R., Yunindasari, D. R., Qanisak, N. N., & Sofiana, L. (2022). Prediksi Pergerakan Saham JKSE Dengan Metode ARIMA Menggunakan Software R Guna Keputusan Investasi Pada Masa Pandemi Omicron. Seminar Nasional Hasil Riset Dan Pengabdian, 4(SE-Penelitian), 120–130. https://snhrp.unipasby.ac.id/prosiding/index.php/snhrp/article/view/302
Rani Afkarina, Cindi Septianza, Ahmad Faisol Amir, & Mochammad Isa Anshori. (2023). Manajemen Perubahan di Era VUCA. Lokawati : Jurnal Penelitian Manajemen Dan Inovasi Riset, 1(6), 41–62. https://doi.org/10.61132/lokawati.v1i6.332
Rau, V. P., Sumarauw, J. S. ., & Karuntu, M. M. (2018). Analisis Peramalan Permintaan Produk Hollow Brick Pada UD. Immanuel Air Madidi. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis Dan Akuntansi, 6(3), 1498–1507. https://doi.org/https://doi.org/10.35794/emba.v6i3.20233
Rofiqi, R., & Mukhlis, I. (2023). Implementasi Etika Bisnis Era Vuca. Ethics and Law Journal: Business and Notary, 1(3), 275–281. https://doi.org/10.61292/eljbn.78
Sarungu, S., & Iskandar, R. A. (2024). Analisis Perbandingan Metode Moving Average dengan Exponential Smoothing dalam Peramalan Pemakaian Filter 5 Micron. 5(1), 34–40. https://doi.org/https://doi.org/10.54423/teknosains.v5i1.80
Singh Yadav, N., Goar, V., Singh Yadav, P., Chowdhury, S., Ninh Bui, T., Thi Thu, N., & Vijayakumar, K. (2022). Business Decision making using Data Science. 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–11. https://doi.org/10.1109/ICSES55317.2022.9914352
Tanuwidjaja, K., & Widjaja, A. (2020). Prediksi dan Analisis Time Series pada Data COVID-19. STRATEGI (Sarana Tugas Akhir Mahasiswa Teknologi Informasi), 4(1), 144–158.
Trinh, H. H. H., & Tran, T. V. (2023). The Impacts of Poor Data Quality on Business Performance. Science & Technology Development Journal - Economics - Law and Management, 7(2). https://doi.org/10.32508/stdjelm.v7i2.1134
Vista Magdalena Sihombing, C., Martha, S., & Miftahul Huda, A. (2022). Analisis Metode Hybrid Arima-Svr Pada Indeks Harga Saham Gabungan. Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster), 11(3), 413–422. https://doi.org/https://doi.org/10.26418/bbimst.v11i3.54618

Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Syaddam Syaddam, Indah Chairun Nisa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.